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ROBERT J. ELLIOTT

The Existence of Smooth Densities for the
Prediction, Filtering and Smoothing Problems

Brief Qutline of Results

A large number of papers have been produced giving results of both practical and
theoretical interest. I am grateful for the support of the U.S. Air Force office of Scientific
Research and hope it is pleased with what I have done.

In 1987, Irealized the central role played by the idea of a stochastic flow; this gave rise to
a series of papers. The more theoretical consider martingale representation and integration by parts
in function space. This in turn gives rise to more elementary proofs of some results in the
Malliavin calculus. These techniques are reported in papers [2], [3] and [8].

I then realized how the proofs could be adapted to show the existence of densities for
filtering, smoothing and prediction problems, [1]. In collaboration with John Baras and Michael
Kohlman I used the techniques of stochastic flows to obtain results in stochastic control [4], [9 ],
[11]. In particular the martingale representation result was applied and equations for the adjoint
process obtained [5] Similar results were obtained for jump processes and reported in [7]. Work
with my student Allan Tsoi has included integration by parts formulae and time reversal of jump
processes, [16], [20], [25]. With my student Hailiang Yang, results have been obtained on the
adjoint process in partially observed control problems {21]. My most interesting recent work
contains new equations for the adjoint process. Using martingale representation results it is shown
the adjoint process satisfies forward and backward equations, of which the latter is most
significant. These results are described in [17], [19], [24]. The adjoint process appears in the
minimum principle and so plays a central role in determining any optimal control. Martingale
representation results to minimize expected risk are described in [14] and [26].

Full details of results obtained during the contract are presented in the papers.
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Abstract. Using a simple martingale representation result, a partial integration-by-parts formula is
obtained. Quoting the results of Bismut and Michel, it then follows that under Hormander’s
condutions on the cocfficient vector fields. the filtering. smoothing and prediction problemys have C*
density sofutions. The paper does not require the development of any analysis over Wiener space.

AMS subject classifications (1980). 93E11, 60H10,

Key words. Filiering. prediction, smoothing, Malliavin calculus. stochastic ditferential equations.

1. Introduction

Following Malliavin’s remarkable work [8], there have been other trecatments of
the Malliavin calculus, including those of Bismut [1]), Stroock [11] and Norris
[10]. A particularly readable account can be found in the paper of Zakai [13]). In
[2], Bismut and Michel developed a conditional version of the Malliavin calculus
to show the existence of a conditional density in filtering and smoothing prob-
lems. Other important applications of the Malliavin calculus to filtering problems
include the work of Cattiaux [4], Kusuoka and Stroock [11] and Michel [9].
Using a simple and natural expression for the integrand in a stochastic integral,
the authors [5] have been able to give an elementary proof of the existence of a
density for a diffusion under Hormander's conditions for the coeflicient vector
fields. The homogeneous chaos expansion of the random variable is also obtained
in [5). The objective of this naper is to present a conditional version of the results
of [5] and, following the exposition of Zakai. simplify some of the results of

*Rescarch partially supported by the Air Force Office of Scicntific Research, United States Air
Force, under grant AFOSR-86-0332 and European Office of Aerospace Research and Development,
London, England.

** Research partially supported by NSERC Grant A 7964,




270 ROBERT J, ELLIOTT AND MICHAEL KOHLMANN

Bismut and Michel. In particular, a conditional integration-by-parts formula is
obtained without using any functional analysis over Wiener space. However, the
delicate technical sufficient conditions for the integrability of the inverse of the
Malliavin matrix are not discussed. For these we refer to Bismut and Michel [2].

In this paper, the following system of stochastic differential equations is
considered:

dx = Xo(x, ) di+ Xi(x, y) dw' + Xj(x, y) d B! + X;(x, y)'(x, y) dt.
dy= Yy(y)dt+ Y,(y) dB + Y, (y)hi(x, y) dt.

Here w=(w'.....w") and B=(B'....,B") arc independent Brownian
motions. The process x represents the unobserved signal process, while y
represents the observation process. If { Y} is the right continuous, complete
filtration generated by {y}. then the filtering problem discusses E[x| Y], the
prediction problem discusses E{x.| Y;] when s =1, and the smoothing problem
discusses E[x,| Y,] when s> 1.

Using the simple martingale representation resuit of [5], a conditional version
of the Maliiavin calculus is developed in Section 4. Suppose T = and let ¢ be
any smooth function on R? with bounded derivatives of all orders. In Section 5,
we show that if the inverse of the conditional Malliavin matrix M, belongs to
LP(€)) for all p. 1 € p<==, then

lE[g:—i (x| Y,.]ls K(y) ,scu;?ulc(x”

for all multi-indices a =(ay,.... a,), where K(y) is 2 Yy-measurable random
variable which is finite a.s.

This inequality, using simple Fourier analysis, implies that the random variable
x, has almost surely a conditional density given Y., which is infinitely differenti-
able. Using Jensen's incquality we can immediately deduce

E[ iy

< K'(y) sup Je(x)].
e RY

where 521 or s = 1. Therefore, the smoothing, filtering and prediction problems
for x,, given Y;, have, almost surely, smooth conditional density solutions.

2. Stochastic Flows

We recall in this section the properties of stochastic flows, and in particular those
relating to lower triangular” systems obtained by Norris {10]. See also Stroock
[11) Let w,=(w/!.....w", 1=0, be an n-dimensional Brownian motion on
(2. F. P). Write { F,} for the right continuous, complete filtration generated by w.
Supposeé Xu. Xi. ..., Xm are smooth vector fields on [0, ] X RY, all of whose
derivatives are bounded. Then from Bismut {1}, or Carverhill and Elworthy [ 3],
we quote the following result:




SMOOTH DENSITIES FOR PREDICTION FILTERING AND SMOOTHING PROBLEMS 271

THEOREM 2.1. There is a map £:Q %[0, %) X [0.®) x R — R* such that (i) for
O0<s<(and x€ R* §&,x) is the essentially unique solution of the stochastic
differential equation

d.&.'(’x) = /YU(‘- &t(x)) df+ Xi(’- _Es.t(x)) dw:o (2- l)

with & .{(x) = x. (Note the Einstein summation convention is used.)

(i) For each w. s, t the map &,() is C™ on R* with a first derivative, the
Jacobian, 3& Jax = D, ,, which satisfies

dab, = eall (t. & (X)) D, dt + X (t. & (X)) D, . dw! (2.2)
a¢ ag

with-initial condition D, ;= |, the d X d identity matrix.

REMARKS 2.2, This result is proved, as quoted, for possibly time in-
homogeneous coeflicient vector fields, X,, though we shall ot use this general-
ity. Note that (2.2) is obtained formally by differentiating (2.1). In fact, equations
for higher derivatives 9"£/6x" are obtained by further differentiation. However, if
we consider the enlarged system given by (2.1) and (2.2). the coefficients are not
bounded, because of the linear appearance of D, , on the right of (2.2). However,
Norris [10] has-extended the results of Theorem 2.1 to such systems with time
homogeneous coefficients. To state Norris’s results, we first define a class of
‘lower triangular’ coeflicients,

DEFINITION 2.3. For positive integers a, d. di,...,d, write S,(d,.....d)
for the set of X € C™(R?, RY) of the form

X(I)(xl) Xl\
@y 2 2

X(x)= X (x.x:) for x= x (2.3)
XMt x3, ... x5 x*

where R is identified with R* X« --x R%, x¥Je R% and the X satisfy

D"X
( sup ‘————-(-ﬂv sup ]D,X"’(x)l)

Xllsta.an = su
" "S‘ ~ P u<n<N(l+1Xr') 15jeak

e RY
< for all positive integers N. (2.4)
Writc S((il, ces dk)= UaSa(d,. veny dk)-

REMARKS 2.4. Note Equations (2.1) and (2.2) can be considered as a single
system whose coefficients are not bounded. but are in S(d.d?). The final
supremum on the right of (2.4) implies the first derivatives of X' are bounded.
as are the first derivatives D; in the ‘new’ variable x/ of X'"(x',....x’). This
means X" is allowed linear growth in x/, a situation illustrated in (2.2). We quote
from Norris the following result.
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THEOREM 2.5, Let Xy. X\..... Xm€ S,(d,..... di). Then there is a map
2 1 X[0, %) x [0, ®) X RY— RY such that

(i} for Vs s<rand x& R lw, s. 1, x) is the essentially unique solution of the
stochastic differential equation

dx, = Xo(x,) dr+ X/(x,) dw; (

(£
;)
o’

with x, = x.

(i) for each w, s, t the map ¢(w, s, 1. x) is C” in x with derivatives of all orders
satisfying stochastic differential equations obtained from (2.5) by formal
differentiation.

(iif)  sup E[ sup |DVd(w, s, u, x)|']
IxjsR SSu=<t
= C([). S, 1, R. N. d| vy dk , o, " X()"S(‘,_N). .es ," Xn“.‘;(u.N))- (2())
REMARKS 2.6. Norris proves Theorem 2.5 by induction on i. Write (2.5) as a
system of stochastic differential equations for j=1,..., k

dxf= XP(x;..... xByde+ Xx! L xD dwt,
xi=x'e RY. (2.7
Suppose the result is true for i=1,..., j=1 and write X"w.s.1,x")=

XM xNw).. ... 2} (). x'). Then (2.7) can be written in the form
dxi= Xo(s. 1. x)di+ X(s, t. x]) dw}

and Theorem 2.1 applied. A difficult step is establishing the result for j=1.
However, this follows by a stopping time argument, which is essentially the
method by Bismut [1]. Returning to the, possibly time inhomogeneous, situation
of Theorem 2.1, consider the process V defined by

- - HX‘, - i I"Xj 2 _
V== VSR80~ T (S0 £ 0
axX;
— A [} 2.4
Vi 3§ (1, &l(x)) dw,, (2.8)

with V,,=1. Then by applying the Ito rule, we see d(D,,V,,)=0. while
D,.V,,=1. the dxd identity matrix. Therefore, V,,= DJ}. By applying
Theorem 2.5(iii) to the system given by Equations (2.1), (2.2) and (2.8). we have

ID%l= sup D] and [VES= sup |V..]

sNu<y ISust

are in LP() for all p<s. Finally. for 0 < s =<1, recall, by the uniqueness of the
solution of (2.1):

fu,;(xu) = ,f;.:(fn_;(xn)) = &t.x(X). if x= Eo o), {29
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Differentiating (2.9)

Do, =D Dy, (2.10)
and

Vou = VsV, .11

3. Martingale Representation

Consider a stochastic differential system with coefficients in some set S, as
discussed in Theorem 2.5, and let & ,(x.0) be its stochastic flow solution. For
some T >0 consider a real-valued differential function ¢ for which the random
variable ¢(&.+(x0)) and the components of the gradient cg(&.r(x0)) are in-
tegrable. Let M, be the right continuous version of the martingale

E[C(.Eu_'l'(xu)) ’ Ft]

There exist several proofs of martingale representation results; see, for example,
Bismut [1] and the references given-there. However, the following proof in the
Markov case. see [5], is particularly straightforward.

THEOREM 3.1. For 0=t T, My = E[c(&.r(x0))] + s 7.(5) dwi where
v(s) = E[Cg(fo,’r(xo)) Do.r ‘ Fs] DS.lsX-(S- fo,;(xn))-

Proof. It is well known that M, has a representation
M,=M(,+j yi{s)dw! {3.1)
(4

for some predictable integrands ;. Because the process &, r(xs) is Markov

M, = E[C(.fo.’r(Xu)) I F:]
= E[c(&.1(x) | F] (3.2)
= E,[c(&.7(x))]

= V(1 x), say, where x = & (x0).

By Theorem 2.5 and the chain rule ¢(& r(x)) is differentiable, in fact smooth, in
x. The differentiability of E,,[c(&.+(x))] in t can be established by writing the
backward equation for & r(x), as in Kunita [6). Consequently, applying the Ito
role to V(1, x), with x = & r(xa) we have

t

V(i &, {x)) = V(0, x) + I

(‘1‘—/+ Lv) ds+
as

aVv

+ '[) "‘:,‘; (Sy fﬁ.s(Xu))Xi(S, §0.=(x0)) dw; (33)
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where
d a1 dn, ¥
L=) X\,—+-= ( X‘X)-——~—-.
,-; Yax, 2..,25. kgl A5 ax,

By the uniqueness of the decomposition of special semimartingales, comparing
(3.1) and (3.3). we must have (as is well known)

Y%
—4Lv=0
as

and

Vv
¥(s) = %}‘ (s, fo.s(xu))xi(s. $o.s(x0)).

From (3.2)

av
%—x- = E[C&(é,'r(x)) DS.T l I:S]

50 by (2.10)
vls) = E[Ce(fu."r(xu)} Dy, C]D(-;ISX.(S. £o.5(xv)).
COROLLARY 3.2. The result extends immediately 10 vector (or matrix) functions
c.
COROLLARY 3.3. Note. in particular,
C(fu.'r(xo)) = E(C(fu.T(xo))] +

T
+J' E[‘-‘g(fo,r(l’u»Du_T ‘Ex] Dt?.lxx.(-\‘. Sos{xp)) dws. (3.9

LEMMA 34. F is generated by the set of stochastic integrals of the form
Jo nis, wy) dw!, where the integrands vy, are smooth functions of s and w, at time s,
with bounded derivaties of all grders,

Proof. o{w,} is generated by g(w.) for ge CHRY). If we apply Theorem 3.1 to
the process w,, so w, = X+ {w, = w;) where x = w, . the Jacobian is the identity 1
and

Elg.(w)| F]1= E,.[g.(w)] = v(w,),
where
7( W,) = (Yl(w;) ----- Yol W:)) = Ey.w,“g-v'( wo..., gw"‘( W;))}-

Therefore,

20w = Elgu)]+ [ vi(wy) dwt.

0
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where the y; € Cr(RY). Consequently, o(w,) is generated by stochastic integrals
of this form. Allowing the integrands to depend on s we that £, which is

generated by w,. for s<1t, is generated by stochastic integrals of the form
Jo vls. wo) dwi, where v, € CF{[0. ) X R™).

REMARKS 3.5. So far we have considered an a-dimensional Brownian motion
w=(w' ..., w™) and a state vector x€ R*. Consider now a larger systenm:
suppose B=(B'...., B") is an n-dimensional Brownian motion, defined on a
probability space (Q2. F, P), which is independent of w. Write {F} for the right
continuous, complete filtration generated by B, and {G,} for the right continuous,
complete filtration of Q% Q generated by £, X £;. Consider a second state vector

ve R” and a stochastic differential system defined on OQxQ. Fx F. PxP) by
the equations

dx, = Xolx,. y) dt+ Xi(x,. y) dw; + Xi(xl Ly dBL,
dy = Yoly) de+ Yi(y) d B, (3.5)

with (x(0), y(0)) = (xo, yo) € R* X R”. We shall suppose the coefficient vector
fields Xo,.... Xm, Yo...., Y, are such that the coefficients of (3.5) belong to

the space S, so that Theorem 2.5 can be applied. Note that in (3.5) the process y
is not influenced by the process x.

NOTATION 3.6. Suppose (x, y) € RY X R? is the state of the system (3.5) at time
s. We shall denote the solution flow of (3.5) for 1= 5 by the map

(x, Y) = (s (x y), yeu(y)).

The Jacobian of this map looks like

Ax.(x, y)) 3(x.(x, )

(. (x, ¥). ys.{y)) ax ay N
= . 3.6
i, y) A yely) 3.6
0 —_—-ay

Write D (x. y) for the ‘partial’ Jacobian a(x.(x, y))/ax. The existence of the
large Jacobian, and, therefore, of its components, including D,,, is given by
Theorem 2.5.

As in [2], we now introduce a new measure on (X Q, Fx F) by a Girsanov
change of density.

NOTATION 3.7. Suppose h(x, y)=(h'(x,y)...., h"(x, y)) is a smooth function
in C*(RY*?, R") with bounded derivatives of all orders. Define the real valued
process L on X x[0,%)*x RYX R” by

L, {x, y)

« Lo )
=exp{ | Wnate 2, 3a 983 T [ Wltale, 9. oad )V dus).

~i-|
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Then
dL; (x. y) = L, x, I (xdx, y), yodx, y) dBi, (3.7

with L, ,(x, y) = 1,50 L is a {G} martingale. Furthermore, LY, = sup,«, Lo,y i$ in
cvery space L”(QQ), 1 < p <o, Because 4 is bounded, we also have that (Lg))* = '
supu=d Loy is in every LP(Q), 1 < p <=, We could consider the flow given by
the combined system (3.5) and (3.7). However, for the moment note that for

O<ss<y !
Lo.(x0, yo) = Las(xa. yo) Ls{x. y), (3.8)
so writing L = Ly (xa, yo) we have
('iLUJ -
aL - x.l(xv Y)
and
aL ALy, AL
Lot Losy oy Lo, 222, (3.9)
axy 8.\’(; ax

with a similar equation for Ly, /@ya.

DEFINITION 3.8. Define a measure P, on (A x Q. Fx F) such that its restric-
tion to G; is given by

dPulw, &) = Lo xa. yo) dP(w) X dP(&).
Then Girsanov’s theorem states:
THEOREM 3.9. Under P, the process B' is an n-dimensional Brownian motion
independent of w, where

Bi,= B, —J h(xo,: ’ Y().s) ds.
(4]

Therefore, under the measure Py, the process (x4, yi..) is the solution of the
stochastic differential equation

TRRET

dxe. = Xo(xs,, )‘:.l) dr+ Xi(x,,. )’s.:) dw; + /\-’](xt.l v Vaur) dB}+
+ X-[(xs.l . ,Vs.l)hi(xx.l s )’s.:) dis,

d)’;.: = Y()()’s.r) di+ Yi()’s.l) dB,ll + Yi()’s.r)h’(xs,l- ,V_u) di, (3“))

with (x5, yos) =(x, y)€ RYX R,

BUE

REMARKS 3.10. The system (3.10) provides a natural setting in which to discuss
filtering, smoothing or prediction problems. The process x, represents a signal
which is not observed direcily. instead, one observes the process y, which is
influenced by x, through the process h(x,. y). Write { Y}} for the right continuous,
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complete filtration generated by y. and E, for expectation under P,. The filtering
problem discusses E,[x,| Y,], the smoothing problem discusses Ei{x, | Yy), where
< T, and the prediction problem discusses Eqx[x,| Yq], where t= T

In this paper,-using-the techniques of the Malliavin calcuius, we given sufficient
conditions in the filtering, smoothing and prediction cases, that the conditional
distribution of x, has a smooth-density.

4. Integration by Parts
Suppose 0< 1< T and let U, r(®) be an Fp measurable random variable of the
form discussed in Lemma 3.4, that is
f.,.
U.,.r(a';)=J y(s. B)dB, 4.1
1]
where v € Cy{{0.%) x R") for 1 sj<n. Consider the system given by (3.5),
(3.7yand (4.1) on (X Q, FXF, Px P):
dx,, = X(l(xs.l s y:.«) dt+ Xi(x,.0, y:.l) dw;+ X;(Ss.c N }’s.:) dB{
dys., = Yo(y..) dt+ Yi(y,.,) dBi. (4.2)
di,, =L, W%, yi) dB{,
du(.l = ')’,(‘, B{)de -

Then Theorem 2.5, with (x, Vse Leg. Uss) = (x, y, 1, 0), can be applied 10 (4.2)
and we can consider the associated stochastic flow. Note U, does not involve x.
v.or L,and if Uy, = U then

U, = U+j y(s. B,)dB!. (4.3)

Also. if L =Ly, from (3.8)
Lo,= LL,{s. ,V) (4.4)

THEOREM 4.1, Suppose 0<(<T and let ¢ be a C™ function on RY with
bounded derivatives of all orders. Then for any square integrable predictable process

u(s) = (u(s), ..., un(s))

7

E[ Uo.rLo1¢(x0.(xq. }’0)) j ui(s) d W;]

(4

=1

=3 E[uo.ru,.wc,(xl...(x(.. yu»D(...j Da.',x.(s>::.(s>ds]+
(1

m 5 . ¥ .
+y E[ UnrLoaLire(Xos(Zos yo)) —%‘;’— f D! Xi(s)u(s) dsJ
fm] [{] (3
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'S

- Z E[U(,_TL.,_-,c(x(,_,(x.,. yo)) J LI;_‘,,%-"—’- DslX(s)u(s) ds]. (4.9)
{

el ) ax0
Proof. First recall the-derivation of Theorem 3.1 and write for 0 s s<(s T

V(s. x. Y, L.U)= E[Uo.‘l'Lo.‘l‘(Xo- ,V())C(X().:(Xu» )’0))' Gs]
= E[(U + U,.p) LLo 2 (x. y)c(xo.(x, ) | Gi) (4.6)
= Es.x.y.l..U[(U + Us.’I‘)LLt.T(xv )’)C(xx.l(xv y»]

The martingale representation result is obtained by writing down the Ito formula
for V, and the derivatives of V are found by differentiating the conditional
expectation (4.5) in x, y, L and U. Note that for s>t the derivative of
c(xe.(x. y)) in x is zero. We, therefore, have

Un.rLo.r(x0. yo)c(Xo.(x0. ¥0))
= E[Up.1Lo.r(x0, yo)c(xo.(x0, yo))] +

+ j E[Un.Lo7¢s(Zou(Xo. yo) Do, | G,1DGMX, dwi+ X, dB) +
0

(! alx; . (x. :
+ E[U().TLA).’I’C;:(XU.((X(h yo)) ‘SLBL;—YD' l Gs] Y,dBi+
Jo

g

+1  E[UsrLsrc(xo.(x0. yo) | GJ0 dBi +
Jo

aLs.'l‘
ax

L, )
: ‘,”‘;' (x. Y)c(xo(x0, yo)) | Gs] Y,dB.+

-

T
+ E[Uo.'rl— (x. y)e(xodxo, y(,))lGx](X,de- X,dB%) +
Jo

. T

+ E[ UsrL
Jo

-

+ E[ Ue rLoac(xo4(x0, yo)) l Gx]‘)',' dBi. 4.7

0

Ta‘king the product of (4.7) with § w(s) dw!. because w and B are independent
under P x P, we have

r
E{Us+Lorc(x0,) I u,(s)dw!]
o

= Z E[Uu.'an.'lfz(Xu.x)Uu.: j DosXi(s)u,(s) dS] +
)

i (]

n

.
1L
o5 Bl Upretrgn [ 1 2ty _,)X;(s)ds] (4 8)

=1 0 ax
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From (3.9).

A,y dlor ., dL -
L ",L’ = ‘l.'l u,l" , = L..r(x, )’)Dui
dx aXo dxq

Substituting in (4.8) the result follows.

NOTATION 4.2. Write * for the transpose. Furthermore, write

Rz = j (Dit XAs)* dw!,
(1]
m T 5

Aor= 9 [ La.l‘—'“—‘ﬂ DL Xi($) Xi(s)(DGY)* ds
=1 Jo dxg

and recall the Malliavin matrix, [1], [5). (which here is a *partial’ Malliavin matrix
in the X; vector fields):

m ™
Moz=Y, L D3t Xi(s) Xils) (D" ds.

ial

COROLLARY 4.3. We then have the special case of Theorem 4.1 obiained by
taking u(s) = (Dg s Xi(s))*:

E[Us.rLo.1c(x0.) Ro.7)
= E[ U().TL().TC((XU,I) D().IMU.I] +

a L().T

dXo

+ E[ Uo.rLorLore(xo,) Mm-] - 4.9)

— E[ Uy rLorc(x0.)A0.7]

COROLLARY 4.4. Equation (4.9) is still true for vector, (or matrix), functions c.

REMARKS 4.5 The gradient ¢, of ¢ occurs in only one term, so (4.9) is an
‘integration by parts’ formula. Suppose g is a second smooth function with
bounded derivatives of all orders. Applying (4.9) o the product c(xo.)gl(xo.) we
have

E[Up Lo r¢(x0,)8(x0.) Ro.7]
= E[ Ug.rLo.r(ce(x0,) g(x0.0) C(xo.,)g,(xo,,)) Dy Mo, ]+

- aL
+ E[ Uu.v-lm,»an.'-rC(x«»..)g(xo_,) (.,:'T Mu.'l']
()

= E[Uy.rLo.rc(x0.)8(x0.)Ao1). (4.10)

From Lemma 3.4 the random variables Uy, v generate For 50 (4.10) can be written
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E[ Lo pc(xoy) 2{xa,) Ro,’r { P:J

= E[Lor(cdx0)8(x0) + clxo) gebxo) DoMo, | Fr]+

, a Loy -
+ ELL(),’I'L(I!I‘C(X().I)g(xﬂ.l)‘ f-().’l lwu.'l‘l F’l‘]
dxg

e E[Ln.‘ﬂ»'(-’fo.u)g(xu.:)/\n.'r—l F’l]
Under Px P, Yy < Fy s0
E[Lﬂ.vf(xn.:)g(xu.:) Ru.’r‘ Y'r]
= E[L(),'I‘(Cx(xo,:)g(xn.l) + C(Xu‘.)gx(x().:)) D().:Mu., l Y‘l‘] +

_ 3Ly,
+ E[Lo.'rLu.'TC(Xo.:)g(Xo.:) : a;) = Mor| Y’I']
O

- E[Lo7¢(x0.)8(x0.0A0.r | Yrl.
Now

Eh[C(Xu.z)g(xu.:)Ru.T l Y'r] = E[L(».TC(XO.:)g(Xn.:)R(),'r l Y‘I‘](E[LU_'I‘ i Yr])_‘-

Furthermore, L, >0 a.s.; therefore
E[Lyy| Y. ' < as.

Consequently, dividing by E{ Lo+ | Y] we have
En[c(x0.)g(x0.)Ro.1| Yr]

= E, [( Cx(xo,:)g(Xu..) + C(Xu.:)gx(xo..)) Dy Mo, ’ Y'r] +

- d Ly, r
+ E[Lu.!rC(Xu.«)S(Xu.:) L Mo YT]

(-’X()
- Ey [C(Xo.:)g(xa.:)/\u.'r l Y'r]‘

(4.11)
where both sides are finite a.s.

With this in mind, to obtain a bound for the conditional expectation
En[ci(x0,0) ] Yr] we would like to take g = Mgl Dg) in (4.11). However, Dy, and
M, involve the past of the process &,, Do, and M,,. This difficulty can be
circumvented by considering an enlarged system. A second difficulty is that the
function g(M,,, Do) = M;1D5) does not have bounded derivatives. However,
D™'= V is given by (2.8). Considering g (M. V)=(M+¢&)™"'V for ¢>0 and
letting € — 0 we see Equation (4.11) holds for such a g.

NOTATION 4.6. Let ¢ w, @, 5.1, x. y. L, U) denote the flow associated with
the system (4.2). Write D'} for the Jacohian associated with this flow. Note that
among the components of D) are the ‘partial’ Jacobian

AR

B il
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ax, (x.y)

0x st

and the gradient 3L, (x, y)/dx. Write

R(()) — I (DJ ul’ (“))* dr‘\':v‘ .

m

A=A =Y j L,u Ly D,'LX(u)X(u)*(D Y du,

i=l

M=M= 3, [ DILX() X (D5 du

iml Jx
Then the system
d)(l)= ((b“". D(n)‘ R((n‘ M(n) A(m)
is Markov with coefficients in
S(d+p+2,d+p+2+(d+p+2)°
2d4p+2+(d+p+222d+p+2+2d+ p+2) 1)

The resuits of Theorém 2.5 apply to this system and its flow ¢, Note that M, is
the predictable quadratic variation of the tensor product of R, with itself. Write
X" for the coefficient vector fields of the w' integrals in ¢'*), and D!} for the
Jacobian of ¢ Also write

R = [ (DU XY gt
(1)

and M) for the predictable quadratic variation of the tensor product of RY} with
R™ which we shall denote by

Mf,l,, - (R(l)® R(())

Then define ¢ = (¢, DV, R, M) so ¢ is a Markov process for which
the stochastic flow results of Theorem 2.5 hold. Proceeding in this way we
inductively define X' for the coefficient vector fields of the w' integrals in ¢,

R = | (DY X\™(w) dwi,,
(4

MY =(RW@RY),,
and
d)(rwl): (d)ln)’ D‘"). R("’, M‘",).

Write V,, for the gradient operator in the components of ',




282 ROBERT J. ELLIOTT AND MICHAEL KOHILMANN

THEOREM 4.7. Suppose ¢ is a bounded C™ scalar function on R with bounded
derivatives. Let-g be a possibly vector, (or matrix), valued function on the state

space of &' such that g(¢"(0, 1)) and V,g($"(0, 1)) are both in some LP(Q).
Then

Enlc(xa.d gt 0, N REY| Yol
= En[ce(x0) g(6' N0, 1) Dy Mo, | Yo+

+ En[c(x0)Vig(@ (0. 0)DEIME] | Yol +

Lo7

¥ Eh[L(. a0, ) 2T Moy Yq]

- El.[C(Xti‘:)H(¢"')((), NAor| Yrl

Proof. The result follows by applying to the system ¢! the techniques used to
derive (4.11).

REMARKS 4.8. Theorem 2.5 implies

supIDus sup| M{l. sup

=<t sst

dLy
x(,s ls sup|Ao.|

s<r

are in L*Qx £, Px P) for all | < p< and, therefore, finite a.s. We have
already noted that

sup| D5yl and sup L3} )
s <y

are in every LP(QAx ), PX P), 1 < p <o, To write out the above results in terms

of Dy, dLp,/9x and higher derivatives involves very involved calculations. Even

in the one dimensional case, it seems better to introduce the sequence of flows

6. Theorem 4.7 can again be thought of as giving a conditional ‘integration by
parts’ formula for ¢, .

COROLLARY 4.9. If M3% is in some LP(QX8, P) taking g(d'"(0. N) = E
: M5iDG) in Theorem 4.1 we have
i

Eh[cx(Xo.:H Y'r]
= Eh[C(X().:)MJ.'nDJ.’@ Ro,'r‘ Yr]
- Eh[C(X(H)(VIS) Dy, Mo, ,)Df,'? 8’3{ ]

3
= Exlc(xo) L5 rM5 DG} : I;)T Mo, 1] Y'r]
X

+ Eh[C(X(M)M() :D() rAl) rf Y7 }

Because the remaining terms are integrable and, therefore, finite a.5., we have
proved the following resuit:

nie 1.5,
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THEOQOREM 4.10. Suppose Py, is the probability measure of Definition 3.8 and
(Xo.0» Yo) is the solution under P, of (3.10). Let ¢ be a smooth function with
bounded derivatives of all orders. Then if Mg, Yeis in some LP(1%x 8, P)

VE[culxo) | Yl K(y)*su‘g, Je(x)). (4.12)

where K(y) is Yp-measurable and finite a.s.

REMARKS 4.11. Condition (4.12) implies that the random variable xo (X0, Yo)
has a conditional density given Yy, d(x), x € R for almost all y. (See Maliiavin
(8] or Zakai [13].) Now for any s < T, Y, = Yy. So by Jensen’s inequality. from
(4.12)

[Efc(xod | Vel < K'(y) sup [e(0) 4.13)

Equation (4.13)-holds for s <t or 5 = 1 so the prediction, filtering and smooothing
problems for the random variable xo.(xo, yo) all have a density for almost all y.

The remaining question concerns the existence and integrability properties of
Mplr. These have been carefully studied, see Bismut [1], Malliavin (8] and
Stroock [11]. For (x,y)e R*x R” write T,, for the vector subspace of R4
generated by the vector fields Xi(x, ¥), ..., Xm(x, y), and the Lie brackets of
XX, y)oe ety X, y) and Xy(x, y),. .., Xa(x, y), where cach bracket contains
at least one of the vector fields X;(x, y), ..., Xm(x, y). Then in Theorem 1.19 of
[2] Bismut and Michel show that for all T >0, Mgk is in LP(QxQ, P,) for all
| < p <= if the following condition H, analogous to a condition of Hérmander is
satisfied:

H:T..,, is equal to the whole of R“.

As Bismut [1] observes, if H is satisfied at (xq, yo) then it is satisfied in some
neighbourhood of (xy, yo).

Finally recall that if u is a nonsingular linear map of R to itself, then the map
¢:u-> u"" has a derivative ¢'(«) which is a linear map on the space of linear
maps of RY to itself given by ¢'(u)-h=—u"" h-u"'. Applying this to
(Do, Mo.) = Mgi D5}, we have

Enlex(x0.)] Yr]
= En[c(x0)M5:D5:® Ro.x | Yrl
= En[c(x0. )M (V1Mo )(DEIMED MG DG | Yr]
= Eu[e(xo. MG D5V Do X DEIMEDN DG Yr]

1 a[f“,'r

-~ E, [c(x.,..ma.'TMa.'.Da.,
dxy

Mo, | YT]

+ En[c(x0)M5iDiiAar| Yol (4.14)
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5. Bounds for Higher Derivatives

To shaw the conditional density of xa,, is differentiable, in the prediction, filtering

and smoothing situations, we shall obtain bounds for higher derivatives of the
form:

?l' ~
55 Gual Yo ]| < Ko sup et
ax 16 R*

(5.0
where 0<(=<T. Here a=(a,...., a4) is a multi-index of nonnegative integers
and

a(! _ l"ﬂ‘ (”ﬂ: a’l.‘
ax"  axyrax§r dxge
Again, if 0= 5= T, then Jensen’s inequality applied to (5.1) gives
a%c ,
El = (x0.)] Ys |} < K'(y) suplc(x)]. (5.2)
ax seRY

A well-known argument from harmonic analysis (see [10], or [12]) shows that if
(5.2) is true for all a with |a]=a)+ a2+ -+ a,<n where n=d +1, then the
random variable xo,(xo. yy) has a conditional density 4(x) given Y, which is in

C"*"'(R*%). That is, we have a differentiable conditional density in the predic-
tion. filtering and smoothing situations.

To see how to proceed apply Corollary 4.9 to ¢, in place of c. (If preferred,
Corollary 4.9 could be applied to just one partial derivative dc/ax, in place of c.
However, the result is true for vector functions ¢.) This gives

Eh[cxx(x().l)l YT]
= Enlcdxo )Mo D54 Q) Ror | Yol

- Eh[Cx(Xo.:)(vlg)(Dn.f, Mo.) th‘.?M(”l Yv']

0

1 x g1 a1 OLa,
- Eh[Cx(XO.I)L().!Y‘MO.Ian.ll ";,;;"" Mo+ | Y’r] +
1]

+ Enfcdx0.0MoiDg iAo | Yol (5.3)
Consider the four terms on the right of (5.3). Each term is of the form

Enlc:(xo.)Bi(6'M(0, 0, 60, TH| Y7L i=1,2.3,4.

For each such #; consider a function f; = M5} Dy} and apply Theorem 4.7 t0 ¢
and f; to obtain

Eh[cx(x().l)hi(¢“)(0' ’)s 4)“)(0‘ T))l YT]
o7

= Ep[c(xo.)(6"0, 1), $(0, TH® RE: | Yr]
= Enf{c(xo NN 600, 0, %0, THDEME | Yr)

0.0 87043,1
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= En[clxo. )V TR GV, 60, THDFMER] Yi]

- d .
- E,,[L.T},-c(x"‘,)h,-((fg‘”((). 0. O, TY ‘—%‘-’-’— Mo.r| Y,-]

R

+ Epfc(xo) i 60, 0, 0. THA0r | Yo ).

Substituting in (5.3) we obtain an expression on the right which involves only ¢
and not its derivatives. This procedure can be repeated, using Theorem 4.7, At
cach stage, to replace a term of the {orm

Ei[clxo. )AL 10, 670, TH] Ya)

by one involving only ¢ define /i = hM;5) Dy} and applying Theorem 4.7. Clearly,
higher powers of Mg} are introduced at each iteration. However. Hormander's
condition H is sufficient to ensure that M) is in every LP(Q X, P,). 1 € p<=.
We have, therefore, proved the following result:

THEOREM 5.1. Suppose condition H is satisfied. Then the random variable
Xo.{xu, Yo), the solution of the signal process, has a conditional density given Y; for
almost all y which is in C™(R®) for s = t and s < 1. That is, under condition H the
prediction, filiering and smoothing problems have a smooth density solution.
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Abstract: Using the Ito differentiation rule, the propertics of stochastic flows and the unique decomposition of special
semimartingales, the integrand in a stochastic integral is quickly identified.

Keywords: martingale representation, Malliavin calculus.

Introduction
)

It is well known that a martingale with respect to the filtration generated by 2 rownian motion is a
stochastic integral of the Brownian motion. There have been many derivations o. ne niegrand in this
' representation; see Clarke (1970/71), Haussmann (1979), Bismut (1981) and Davis (1980). In this aote we

give a very short derivation in the Markov case using the properties of stochastic flows and the unique
decomposition of special semimartingales.

Flows

Suppose w=(w',...,w") is an n-dimensional Brownian motion on a probability space (2. F. P).
Consider the stochastic differential equation

dx,=f(1, x,) dt +o(z, x,) dw, (1)
for t >0, where f:[0, c0) X R"™= R" and 0:[0, c0) X R” — R" X R" are measurable functions which are
: three times differentiable in x € R". Write £, ,(x) for the solution of (1) for s > . having initial condition
§,.(x)=x. Then from the results of Bismut (1] there is a set N C 2 such that for w & N there is a version
- of £, ,(x) which is twice differentiable in x and continuous in ¢ and s.

Write z; =3¢, ,/3x for the Jacobian of the map &, ,. Then it is known that =, is the solution of the
linearized equation

<5 =/:\'(S’ X:)Z; ds +Gx(s* x:)z: dw:

with initial condition z, =/, the n X n identity matrix.
Consider 0 <t < T, an initial-condition x, &€ R” at time /=0 and a function ¢(£, 7(x,)) of the final
: " position of the trajectory. Here ¢ is a differentiable, real valued function on R” such that ¢(§, (X)) 2and

- ce(§o.r(xo)) are integrable. Write { £} for the right continuous complete family of o-fields generated by
: o{w,:s<t).

0167-7152/88 /$3.50 © 1988, Elsevier Scicnce Publishers B.V, (North-Holland)
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Then M, = E[c(§,r(xy)) ] F] is an { F }-martingale, and so by. for example. Theorem 12.33 of [4]. M, R
has a representation
1
M= Myt [y, dw, (2)
0

where v is an { £, }-predictable process.

Theorem q
g, r(x)
Y= Ex.x[ce(fo.r(-\'o))'_’é—r\,“— o(s. £5,(x0)) R
¢ ( X), o1 ¥os )"

{Ce(go r(x0)) OT 1 Fy ( E).(x)" ) a(s. &..(x¢))- B
C

Proof. For 0 < 1< T write x = §,,(x,). so that, by the semigroup property of the stochastic flows,
£0.r(x%0) = & 70, (%X0)) = & 7(x). £

M, = E[c(bor(xo) 1 E] = E[c(&, 7 () IFE]) = E [c(&.1())]
= V(1. x).

As noted above. £, 7(x) is twice differentiable in x. The differentiability of E{c(§, 7(x))|5] n 1 can be
seen by writing the backward equation for £, »(x) as in Kunita (7]. However, x = £, ,(x,) so expanding
Fe. £..(xp)) by the Ito rule

V(1. £,(x0)) = M, = V(0. x¢) + fl(%‘,:(s $0.5(x0)) + LV (s. 50.:(-‘0))) ds

/ (5. Sou(x0)0(s. Fo,(xo) dos,. (3)
Here
L= E/’ — T‘lj\;a 3r, where a(z, x,) is the matrix oo *.
However,
B—V%;'ﬂ=£[-§-§(£,.r(x))m] {Ce(gyr( ) ag"( i,

[55(50 r(x0))—5— %, T( 2 J

M, is certainly a special semimartingale. so the decompositions (2) and (3) must be the same.
In particular, equating the martingale terms we have

6£,r(x)]

oy

=B ecltar(eo) (5. f0.(x0)

00.7(x) | (%0 -1
e 3]
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As there is-no bounded variation term in (2) we must also have immediately:

9l

(. S0, (x0)) + LV (5. $0.(x0)) =0 with V(0. o) = E[e(&o.r(xa))].-

The techniques can be extended to more general martingales as in Davis (1980). Similar techniques
quickly give the results of the Malliavin calculus in this situatipn.
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INTEGRATION BY PARTS, HOMOGENEOUS CHAOS
EXPANSIONS AND SMOOTH DENSITIES!

By ROBERT J. ELLIOTT AND MICHAEL KOHLMANN

University of Alberta and-Universitdt Konstanz

By iterating a martingale representation result a homogencous chaos
expansion i$ obtained. Using the martingale representation, the integration.
by-parts formula of the Malliavin calculus is derived using properties of
stochastic flows. The infinite-dimensional calculus of variations is not re-
quired.

1. Introduction. Since Malliavin’s outstanding breakthrough [9] there have
been other treatments and simplifications of the Malliavin caiculus, including
those of Bismut [2], Stroock-{11], Bichteler and Fonken 1] and Norris [10]. In
this paper we apply a very simple representation of the integrand in a stochastic
integral, Theorem 3.1, to first derive the homogeneous chaos expansion of a
certain random variable. An integration-by-parts formula-is obtained and, if the
Malliavin matrix .M has an inverse which- belongs to every L?() (a condition

-guaranteed by Hoérmander's H, hypothesis), it is shown the diffusion has a

smooth density. The principle simplification in-this paper is the observation that
by considering an enlarged- Markov system only the simple stochastic integral
representation of Theorem 3.1 is needed. No infinite-dimensional calculus is
required.

2, Flows. In this section we recall some definitions and properties of sto-

chastic flows on d-dimensional Euclidean space. Suppose w, = (w},...,w™),
0 < ¢, is an m-dimensional Brownian motion on (&, F, P). Write {F,} for the
right-continuous complete filtration generated by w. Let X, X,,..., X,, be

smooth vector fields on [0, c0) X R all of whose derivatives are bounded. Then
from Bismut [2] or Carverhill and Elworthy [4] we quote the following result.

THEOREM 2.1. There is a map & Q X [0, 00) X [0, 00) X RY = R? such that:
(i) For 0 s s<tand x € R? £, (x) is the essentially unique solution of the
stochastic differential equation

(2.1) dt, (x) = Xo(t, &, (x)) dt + X (¢, £, (x)) dw/,

with ¢, (x) = x. (Note the Einstein summation convention is used.)

Received May 1987; revised January 19838,
'Supported by the Natural Sciences and Engineering Research Council of Canada under Grant
7964.
AMS 1980 subject classifications. 60HO7, 60110, 60J60.
Key words and phrases. Martingale representation, stochastic flew, homogencous chaos,
Malliavin calculus, integration by parts, smooth densities.
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INTEGRATION BY PARTS 195

(ii) For each w, s, t the map §,()isC*on R — RY with a first derivative,
the Jacobian, 3¢, /dx = D _,, which satisfies

X, X,
(2.2) dp, = 3t (t £.. 1("')) @t (t .. :("'))Dh ,duwy,

2

with initial condition D, , = 1, the d X d identity matrix.
i) If W, = 9%, /8r is the second derivative, then

dw, %, — (¢, )W, dt + aX‘( W, dw,
8.!'_ as g\ l(x) ¢+ as t!gs.t(x)) st W,
23) 32X 32X,
t (¢, ¢, (2))D, @ D,  dt + e ~=(¢t, & .(x))D,., ® D, ,dw,

with W, ,=0€ (R*® R*) ® R

REMARKS 2.2. Note that (2.2) and (2.3) are obtained formally by differenti-
ating (2.1). However if we consider the enlarged stochastic system given by
(2.1)-(23) for (¢, » D, ;, W, ), the coefficients are not bounded. Nevertheless,
Norris {10] has extended the results of Theorem 2.1. to such systems. To state
Norris' results we first define a class of “lower triangular” coefficients.

DerFiNiTION 2.3. For positive integers a, d, d,,..., d, write S(d,,..., d;)
for the set of X & C®(RY R?) of the form
XM 1) !
(2.4) x(ey =] KOG
X""(x',xzz,...,x") x'k

where RY is identified with R% x --- X R%, x! & R% and the X satisfy

DX (x
(2.5) #Xllsa v = Sup | sup !———(—)—‘ quwx)ﬂ

xeR4\0snsN (1 + [xl") ls;sk

for all positive integers N. Write S(d,,..., d,) =U,S,(d),..., dy).

REMARKS 2.4. Note (2.1)~(2.3) can be considered as a single system whose
coefficients are not bounded but are in S(d, d?, d*). The final supremum on the
right of (2.5) implies the first derivatives of X* are bounded, as are the first
derivatives D, in the “new” variable x’ of X'/X(x’,..., x/). This means X'/ is
allowed linear growth in x/, a situation illustrated in (2.2) and (2.3). We quote
from Norris [10] the following result.
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196 R. 4 ELLIOTT AND M. KOHLMANN

THeEOREM 2.5. Let X, X,,..., X, € S(d,,...,d,). Then there is a map
é: QX [0, 00) X [0,0) X RY = R such that:

(i) For 0 < s < tand x € RY, (w, s, t, x) is the essentially unique solution of
the stochastic differential eq‘uation

(2.6) de, = Xo(x,) dt + X (x,) dw},

with x, = x.

(i1) For each w,s,t the map ¢(w, s, t, x) is C* in x with derivatives of all
orders satisfying stochastic differential equations obtained from (2.6) by formal
differentiation.

(ii) sup E| sup |D"(w,s,u,x)|
(2.7) IxisR sgust

<C(p,s, t,R, N, d,,..., d,, N Xolla. wyr - o0 DX mll e, 2y ) -

REMARKs 2.6. Norris proves Theorem 2.5. by induction on J. Write (2.6) as a
system of stochastic differential equations for j = 1,..., &,

25) def = X xh,..., ) de + X2, ..., xf) dut,

xl=x/e RY,

Suppose the result is true for 1,...,7-1 and write XN w, st x7) =
Xz w),..., x{"Yw), x’). Then (2. 8) can be written in the form

def = Xo(s, ¢, x/) dt + Xi(s, ¢, x/) duw

and Theorem (2.1) applied. The difficult step is establishing the result for j = 1.
However, this follows using a stopping argument, a technique employed by
Bismut [2, 3}. Using the notation of Theorem 2.1, the following result is well
known.

LEmMMA 2.7. For 0 < s < twrite V,,, for the solution of
m

av, = -V, (ajg (¢,6, (x ))) Z(aa;{(t »sa,(x)))

X,

A Y (t §,, [(x )) duwy,

with V, = L. Then D, V., = I, the d X d identity matrix.

(2.9)

Proor. Applying Itd’s rule to V, D, , we see d(V, D, ,) = 0. However,
Va.aDk,s =1LD

- "‘ij}'aﬁf e e — ol

Tr aE L= e =S A
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REMARKS 2.8. An application of Jensen's, Burkholder’s and Gronwall’s in-
equalities shows that sup, ., . D, b sUD, ¢ < AW, ) and sup, ., IV, | are in
LPQ) for all p < oo. Alternatively, this conclusion follows from applying
Theorem 2.5 to the system (2.1)-(2.3) and (2.9). For 0 < s < ¢, by the uniqueness
of the solution of (2.1)

fo.z(xo) = 55.:(5o.s(xo))
= 55.1(3{)’ if x = §,, NEME
Differentiating (2.10), using the chain rule,

(2.10)

(2.11) D, ,=D, D, ,
and
(2'12) %.l = M.t(DO.s ® DO.s) + Ds. (WO.s'

3. Representation-and series expansion. Suppose 0 < ¢ < T and §, (x,)
is the solution of the stochastic differential equation (2.1). Consider a real-valued
twice continuously differentiable function ¢ for which the random variable
(&, 7(x,)) and the components of the gradient c,(£, r(x,)) are integrable. Let
M, be the right-continuous version of the martingale

E[C(go,r(xo))lFll-
We then have the following representation resuit.
THEOREM 3.1. For 0 <t < T, M, = E[c/§, 1(x0)] + [7.(s) dw;, where
vi(s) = E [e(0,7(x0)) Do, 1] D1 X (5. £, %0).

ProoF. It is well known (see 5], for example) that any F-martingale M, has
a representation

(3.1) M,= My + [*1,(s) dus,
0
for some predictable integrands v,. Because the process £, (x,) is Markov
M, = E{e(&,7(x0)IF)]
= E[e(, 7())IF)]
=E, , c(&,_T(x))]

= V(t,x), say,wherex =§£, ().

(3.2)

By the chain rule and Theorem 2.1, ¢(§, 7(x)) is differentiable, in fact smooth, in
x. The differentiability of E[c({, 7(x))|F,]in t can be established by writing the
backward equation for £, +(x) as in Kunita [8]. Consequently, applying the Itd

AR e
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rule to V(¢, x), with x = §, [(x,),

(¢, Eo.z(xo)) = V(0, x,) + fl(%‘; + L’V) ds
(3.3) LA

,BV
+ { —-(s, ‘fo.b(xo))X.(s: go,k(-’fo)) dw,,

Y0 dx

where

d ;) 1 d m ] (92
L= Zxéx'*— z (ZX;iXK)
i=1 [

2 b et \ ke dx; ax,'

By the uniqueness of the decomposition of special semimartingales, comparing
(3.1) and (3.3), we must have (as-is well known)

av B
-a—s’ + LV =0,
and
av
v.(s) = E(S,go_,(xo))X;(s, §o.s(xo))-
From (3.2)
aVv
e E[cf(‘fs.r(x))Ds.TlFs]
so by (2.11)
Yi(s) = E[ce(fo,r(xo))Do.TlFs]Do-,:Xx(s» go.s(xo))- u

REMARKS 3.2. Note in particular the representation
C(ﬁo.r(xo)) = E[C(fo,r(xo))]

(34) T - ]

+/; E[cf(go.r(xo))Do,TlF;lDo.:Xf(s: E().a(xO)) duw.
Theorem 3.1 can be extended immediately to vector (or matrix) functions c.
Finally, it seems the proof of Theorem 3.1 can be extended to the non-Markov
case ([6)).

3.3 NoTATION. Write £® = ¢ for the solution flow of Theorem 2.1, and
D@ = D for its Jacobian given by (2.2). Write ¢ for the d + d2-dimensional
process with components £V = (£, D). Write D™ for the Jacobian of this
d + d%dimensional process. Write §® for the process {® = (¢, DMy and so
on. Then £7*V = (£, D), Note £*) is a process for which the stochastic flow

anes e s s a7
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a ! '
Vit el i ek S




INTEGRATION BY PARTS 199

results of Theorem 2.5 hold. Write

d
Cm(gf)l.}'f‘(xo)) = _S(gn.’l‘(xu))D(),T)

a§
o st gt
e (x87) = g (840 (=) D8
and so on, so
dctm

c(n*l)(gétl;l)(x(()nfl))) = m(‘f&l)"(x(()n)))D&n")‘.

Note the initial condition at 0 for the variable D™ is always the identity matrix
of appropriate dimension. Write X! for the vector field coefficient of w' in the
stochastic differential equation defining £® and abbreviate

XM(s, g0(x5m)) s X(s).

Then by iterating Theorem 3.1, we have the following representation of the
random variable ¢(£, 7(x¢)).

TueOREM 3.4. If ¢ has bounded derivatives of all order, then for any n,

c(§o,7(x0)) = E [c(&o,7(x0))] + /f\:“ E[e®(50%(x))]

mr " pn=n- . - t
(3.5) x'/(‘) ('[) o (.1/(-) D(()'sn‘) XXk(sn) dwﬂ,:) )DO.:XI(S)de
+-[)’I‘(/(-)S. (-/:"E[c(nﬂ)l&,.:]D‘(’,"s)::X;(snn) deJM) )
X D51 X (s) dw,.

Proor. From (3.4)

e($0.7(x0)) = E[C(ﬁo.r(xo))] * j;TE[leFs]D&;Xx(S)dW:

= E[c] + E[c(‘)]j;TDo',:X,(s) dw

+ ff( LB [o®iE,| DK s)) dut| Dy 1X,(5) du.

The result follows by repeated application of the representation of Theorem
3.1.0

-
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REMARKS 3.5. In principle, it is possible to write the previous expansion in
terms of D, , W, , and higher derivatives of the diffeomorphism §, ,, rather
than by considering higher and higher dimensional systems. However, this gives
rise to very complicated formulae. Consider the case when d = 1. Then £V =
(¢, D©) is two dimensional and by Theorem 3.1

E{c(l)(gm)”:;] = E[‘-‘e(5o.r(xo))Do,r]
+,{.,SE[Cee(‘fu.T(x))Do,TDu.r

(3.6) +cg(£0, () Wo, 7Dy, olF,) X, (1) dus

s X
+j(; E[Cf(gu.T(xo))Du.TIFu] 75_'(“) dwxﬁ

Here we are writing £, 7(x,) = £, r(x), where x = §; (x,), and L, r = D, 7D,
where D = D, ,. Note the final integral in (3.6) is a result of differentiating in
the D variables. Recalling (2.11) and (2.12), we have

E[cM(¢M)F] = E[ce(go.r(xo))Do.Tl
+j;sE[055(§0.T(x0))D&T

+¢e( &6, 7(%0)) Wy, 7IF, | D5 L X (1) duw,

(3.7) fE(ce 8o,7(x0)) Dy, 7IF,) D5 2W, X, (1) duw,
E Dy AF] 01 22 () ot
+j; [cf(éo.'r(x())) O,Tl u] 0, u ag (U wu
= E[Ce(go.r(xo))Do,T] + '/:Yj(u»z) dw/,
where
¥(1,2) = a(u,2,1) Dy . X, (u) - o(u,2,2) D5 W, X (u)
(38) +a(u,2,2)Dy ’(u)
Here
a{u,2,1) = E[cée(fo.r(xo))Doz.T + ¢4, (%)) Wy, IF, ]
and

o(u,2,2) = E[ce(fo,r(xo))Do.Tlpu]-
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Substituting (3.7) in (3.4), we have

c(fe.r(.’cu)) = E[C(go,c(xo))l + E[ce(go'T(xo))D"-?}'I:)TDO'.}Xl(s) "
(3.9) e |
+f0 (f()Y;(u,-) w,,)D(,_sX‘(s)de_

1.1 turn, the martingales a(u,2,1) and a(u,2,2) can be expressed as stochastic
integrals. Substituting again, we have

e(&o.7(x)) = E[C(‘fo.r(xo))] + E[Cs(§0,7'(xo))Do.T]_[)TDJ.:X.(S) duw,
~f~15[c“(.§0'7(x(,))D&1. + ce(go.:(xo))wn.'r]
e -1 J =1y s t
x [T [/ it () o | D5 il 5)

"E[Ce(fo,r(xo))Do.T] '/OT(/(;SDO—.EWMX,'(U) dw,{)D(;:_lX,(s) dw!

s iX;
(3.10) +E[Cg(£o,r(xo))Do,r]foT(fODO_-L_a'{j(") de)D&.lX.-(s) duw!

# [ L 018 dat 323,00

+‘/(;(-[0 Yk(o’4) dw:)DOTELVO,uXJ(u) dwaj

¢

+fs(]uyk(v,5) dwf)D([; dw!}Ds 1 X, (s) dw,.
o \Jo

REMARKS 3.6. Theorem 3.4 [or (3.10) in the one-dimensional case] indicates
how a “Taylor series” expansion for the random variable c(£, r(x,)) can be
obtained as the sum of multiple stochastic integrals.

The coefficients of the stochastic integrals are functions of the expected values
of c(&, r(x,)) and its derivatives, and the Jacobian D, - and its derivatives. The
integrands in the multiple stochastic integrals do not involve ¢, but are functions
of the Jacobian and its derivatives, and the coefficient functions X,. By unique-
ness the expansion is-the same as the homogeneous chaos representation. This
expansion can be used to investigate variations about the expected trajectory
and large deviation problems ([7]).

COROLLARY 3.7. Taking c(4, 1(%4)) = §o.7(%o) € RY, so ¢, =1, thed X d
identity matrix, and cg = 0, (3.4) gives

€o.7(x0) = E[fo.r(xo)] + /OT[DO.TIF;]D&;X{(S) dw;,

with corresponding higher-order expansions.

"
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LEMMA 3.8. Write * to denote the transpose. Suppose ¢ and g are real-val-
ued, differentiable functions such that the random variables c(§, 1(x,)),
8o, +(x0))y (€0, 7(x0)) &e(0.7(%y)) are in L%Q). Then

E[0(50.T('”O))é’(*fo.r(xo))]
=E [c<£0-7‘(x0))] E[g(gu.r(xo))]

+E [ f-:' '/OTE[ce(fo,r(xo))DO-Tm]

X Dy 1 X ()X, (s)Dg B [ 8¢ (€07 (x0))IF.] ds |.

Proor. By Theorem 3.1
g(éo.r(xo)) = E[g,(‘fo,r(xo))] + j(;TE[ge(go.T(xo))Do,TIFs]D«:_..:X«(S)dwf-

The result follows by taking the expectation of the product with (3.4). (Note
g =g)0

DEFINITION 3.9. The nonnegative matrix

M, = ¥ [DiiXdu)X*(u) Dy, d

=175

will be called the Malliavin matrix for the system (2.1). Note that something
similar to M, ; appears in Lemma 3.8. In some references, [11] and [12], the
matrix Dy 1My +Dgtr is called the Malliavin matrix.

4. Integration by parts.

THEOREM 4.1. Suppose c is a twice continuously differentiable scalar func-

tion such that c(£y, r(x,)) and c,(£,7(x,)) are square integrable. Then for any
square-integrable predictable process u(s) = (uy(s),..., U (s)),

E[c(fo,r(xo))foT”i(s) dwf]

= }T: E[Cg(fo,z(xo))po.'r_/(;TDO_.:Xi(s)Ux(S) ds]

fo1
PrROOF. Using the representation (3.4),

E[c(fo_r(xo)) f "ui(s) dw;

= £ B[ ["Elecltnrlxo)Doni] D514 (5)u(5) o]
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and by Fubini’s theorem this is

= LE[C»:(EO T(lo) 07[ D, 2Xi(s)u(s)ds|. 0

te]

COROLLARY 4.2. The result is still true for vector- (or matrix-) valued
functions c.

COROLLARY 4.3. Taking each uy(s) to be (D; !X (s))*, we have
T - * 1
E[C(&).T(xo))/‘; (Q).;Xi(S» dws] = E[Ce(5<).'r(x()))D«),TMo.T]-

COROLLARY 4.4. Consider a product function

(&0, 7(xq)) = c(o,7(x0))&(£&. 7(x0))

satisfying the conditions of the theorem. Then

E [c(fo,r(xo))g(go, [(xo))/(')'r( D(,',,';X,(s))‘ dw;]

= E[(cilg0,r(x0))e (&6, %))
+C(§o 'r(xo))ge(fo T(xo))) o, 7 Mo, r]

(4.1)

REMARKS 4.5. What we would like to do in (4.1) is take
8= MO—.}I‘DOT%‘»

so that we can obtain a bound for ¢,. However, Dy ;. and M} involve the past
of the processes &g 1, D 1, My, 1. This difficulty can be circumvented by consid-
ering an enlarged system, similar to the technique used in Section 3. However,
the sequence of enlarged systems is different to that discussed in Section 3, so
different notation will be used. Note that even when the original process £ is one
dimensional the method leads to a discussion of higher-dimensional processes, so
not much simplification is obtained by taking d = 1.

4.6 NotaTioN. Write ¢'%(w, s, ¢, x) = £, (x) for the stochastic flow defined
by (2.1). Now D% x) = D, (x) denotes the Jacobian of the flow ¢/*. From (2.11),
if D=D,,and x = §, (xo),

D§(x4) = D, (x)D

so the system (¢9, D) is Markov. Write RO(x) = [{(D;1X,(u))* dw! and
R = RY,.Then RY),= R + D~ lR(O’,(.x), so the system (¢, D© R®)is Markov.
Fmally, “recall the deﬁmtlon (39) of M, , and write M =M, , M =MD,
Then M{®% = M + D~'M, (x)D*~" and the system

(1) { o r\m\ mm o o
¥ \‘P y U )

st o] g g st
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is Markov with coefficients in
S(d,d + d%2d + d?,2d + d?).

Consequently, Theorem 2.5 applies to this system and its stochastic flow ¢!
Note that M, , is the predictable quadratic variation of the tensor product of
R, , with R? . Write X{" for the coefficient vector fields of w' in ¢V. Further-
more write D“’ for the Jacobian of ¢V, RY), = (DM 'XI(u))* dw! and M)
for the predlctable quadratic variation of the tensor product of R, with R‘O"‘
which we shall denote by

MY = (RY), @ RD,).
Then define
¢ = (¢(l), D, R p),

so ¢ is a Markov process for which the results of Theorem 2.5 hold. Proceeding
in this way, we inductively define ¢(**1 = (¢/®, D(V R M) where R =
HDM X)) dw) and M'™ = (R'™ @ R®), Write v, for the gradient
operator in the components of ¢(*,

THEOREM 4.7. Suppose ¢ is a bounded C*® scalar function on RY with
bounded derivatives. Let g be a possibly vector- (or matrix-) valued function on
the state space of ¢'™ such that g($™(0, T, x,)) and 7,8(¢""X0, T, x,)) are both
in some LP(Q). Then

E[c(¢%0,7))g(¢™(0, T)) @ B
= E[(v4e)($(0, T))g(#X0, T)) Dy My 7
+E[ (4700, T))(9,8)(6(0, 7)) D337

Proor. Applying Theorem 3.1 to cg, we have
c(¢(0, T))g(4(0, T))
= E[c(¢(0,T))g(¢™(0, T))]
+ [TE[(90e)(6°(0, T))8(67(0, T)) Do, 11F,] Dy 1 X,()

+ fo "B [c(¢(0, T))(v,&)(6™(0, T)) DY UF,| DX (s) duo;.

Taking the tensor product with R{’# and the expected value, the result follows.
]

REMARKs 4.8. To write out the preceding result in terms of D, ,, W, , and
higher derivatives of the flow involves very involved calculations. Even in
dimension 1 it seems better to introduce the sequence ¢'™ of flows. Note
Theorem 2.5 implies sup, . |D§")|,sup, . JM§™)]| are in every L"( ). Theorem 4.7
is an integration by parts formula as only one term involves the gradient of

P
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derivatives Voc = ¢, of c.
CoRrOLLARY 4.9. Taking g(¢'(0, T)) = M +D5 3, if My} is in some LP(Q),
E[‘-‘s(fo.r(xo))] = E[C(Eo.:(xo))M&'erO-.’lr ® R‘é’,’r]
_E[‘-‘(go.r(xo))( 18)(Do,7s Mo, ) DEF My |

(4.2)

Because the remaining terms are integrable we have, therefore, proved the
following result.

THEOREM 4.10. Suppose £, (x,) is the solution of (2.1) and c is a bounded
smooth function with bounded derivatives. Then if Mg} is in some L(Q),

(4.3) IEh@”umusKmydﬂL

REMARKS 4.11. It is well known that inequality (4.3) implies that the
random variable £, 1(x,) has a density (see Malliavin [9] or Stroock [11]). The
remaining question concerns the existence and integrability properties of M }.
These have been carefully studied (see Malliavin [9], Stroock [11] and Norris
[10)). In fact, it is known that Mg} isin LP(Q) for all p < o if the following
condition H, of Hormander on the coefficient vector fields X,,..., X,, of (2.1) is
satisfied.

ConprTioN H,. X,,..., X,,,[X, X}], for i, j=0,...,m, [X,,[X,, X};]] for
i,j,k=0,..., m, etc. evaluated at x, € R span R

Finally, recall that, if u is a nonsingular linear map of R? to itself, then the
map ¢: u —~ u~! has a derivative ¢'(u), which is a linear map on the space of
linear maps of Rd to itself, given by ¢'(u)h = —u"'hu~'. Applying this to
&(Dy, 1, My 1) = Mg 1+D; %, we have

E [Ce Eo T(xo))]
= E[ (&6,7(x0)) M52 D5 ® RY )T]

4.4
(@ +E[ oo, r(x0)) M5 2((91Mo £ ) DM ) ) M5 4Dk |

5. Bounds for higher derivatives. To show the density of &, +(xo) is
differentiable, we must obtain bounds for higher derivatives of the form

(5.1) IE[ 3 (£, T(xo))” <K supvlc(x)[.

Ji x€R®
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Here a = (q,..., ay) is a multiindex of nonnegative integers and
Je an g LY
age gy 9 Ity

In fact, a well-known argument from harmonic analysis (cee [10]) implies that if
(5.1) is true for all a with |a] = ) + -+ +a, < n, where n 2 d + 1, then the
random variable §, r(x,) has a denmty d(x) = d(x,,...,x4) which is in
pn—d l( Rd)

To sze how to proceed, apply (4.2) to ¢, in place of c. [If preferred, (4.2) could
be applied to just one partial derivative dc/d¢, in place of ¢; however, the result
of Corollary 4.9 is true for vector functions ¢.] This gives

Eicee‘(fo.'r(xo))] = E[cf(ﬁo_r(xo))Mo‘_'TD(;lTQ R(no.)'r]
—E[cf(go.T(xo))(Vlg)(Do_T, MO.T) DA M(l) ]

Consider the two terms on the right,

(5.2)

(5.3) E[cf(‘fo.r(xo))Mo—.'ero-.;' ® Ro.'r]
and
(5.4) E [ cel $o,7(x0))(v.:8)( Dy, 7 MO.T)Dé.”TM(().IzI‘]'

51 NoTATION. Write M = M,,, D = Dy, D' = D§¥, etc. Let
£(¢") be the function M~'D~ ''© RM~'D~' and g,(¢®) be the function
(v,)(D, M)DWM®M D",

Applying Theorem 4.7 to ¢ and g,, we have
E[e(§0.r(x0))er(¢V) ® ROx]
(5.5) = E|eg(t0,r(x0)) M5 4 D5 3 ® R
+ B[ (£,7(x0))(v26)(67(0, T)) DZ M
Applying Theorem 4.7 to ¢ and g, we have
E[C(fo,r(xo))gz(¢(2)) ® Ro,’r]
(5.6) = B e,(&,7(20))(9:8)( Do, Mo, ) DS2MS
B [c(80.7(x0))(V382) (6700, T)) D ME%

Substituting in (5.2), we obtain an expression on the right which involves only ¢
and not its derivatives. This procedure can be iterated, using Theorem 4.7. At
any stage, to replace a term of the form E[c.(£, T(xo))h(¢"')(0 T)) by one
involving only ¢ define A(¢™0, T)) = h(¢"(0, T )M +-D;+ and apply Theo-
rem 4.7, Clearly, higher powers of Mg 1 are introduced at each iteration. [From
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Theorem 2.5 Dy 7 is in every L().] Hormander’s condition H, is sufficient to

ensure that My} is in every L(R), 1 < p < 0. We have, therefore, proved the
following result.

THEOREM 5.2. Suppose Hiormander's condidon H, is satisfied. Then the
random variable £, (x,) has a density d(x) which is in C *(RY).
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THE PARTIALLY OBSERVED- STOCHASTIC MINIMUM PRINCIPLE*

JOHN S. BARAST, ROBERT J. ELLIOTT%, anp MICHAEL KOHLMANNS

Abstract. Using stochastic flows and the generalized differentiation formula of Bismut and Kunita, the
change in cost due to a strong variation of an optimal control is explicitly calculated. Differentiating this
expression gives a minimum principle in both the partially observed and stochastic open loop situations.
In the latter case the equation satisfied by the adjoint process is obtained by applying a martingale
representation result.

Key words. stochastic control, minimum principle, adjoint process, stochastic flow

AMS(MOS) subject classification. 93E20

1. Introduction. Various proofs have been given of the minimum principle satisfied
by an optimal control in a partially observed stochastic control problem. See, for
example, the papers by Bensoussan [1], Elliott [8], Haussmann [11], and the recent
paper [14] by Haussmann in which the adjoint process is identified. The simple case
of a partially observed Markov chain is discussed in the University of Maryland lecture
notes [9] of Elliott.

In this article we show that the minimum principle for a partially observed diffusion
can be obtained by differentiating the statement that a control u* is optimal. The results
of Bismut [5], [6] and Kunita [16] on stochastic flows enable us to compute in an easy
and explicit way the change in the cost due to a “strong variation” of an optimal
control. The only technical difficulty is the justification of the difficrentiation. As we
wished to exhibit the simplification obtained by using the ideas of stochastic flows,
the result is not proved under the weakest possible hypotheses. In § 6, stochastic open
loop controls are considered and a similar minimum principle with an explicit adjoint
process is derived in § 7. If the optimal control is Markov, the equation satisfied by
the adjoint process is obtained in § 8 using the martingale representation result of [10].
This simplifies the proof of Haussmann [12]. Finally in §9 it is pointed out how
Bensoussan’s minimum principle [2] follows from our result if the drift coefficient is
differentiable in the control variable.

2. Dynamics. Suppose the state of the system is described by a stochastic differen-
tial equation

dé =f(4, &, u) dt+g(1, &) dw,
§.E Rd, §o=XO, 0=(=T.

The control parameter u will take values in a compact subset U of some Euclidean
space R*. We shall make the following assumptions:

(z.)
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L4
(A) Xo is given; if x, is a random variable and P, its distribution, the situation
when [x]?Py(dx) <o forsome q > n + 1-can be treated, as in [14], by including
an extra integration with respect to P,.

(A f:[0, TIXRYx U=~ R? is Borel measurable, continuous in u for each
(t,x), continuously differentiable in x and for some constant K,

U+ XD %, w)l+1fe %, W] S K.

(As) g:[0, TIXx R > R'®@R" is a matrix-valued function, Borel measurable, con-
tinuously differentiable in x, and for some constant K, {g(1, x){+]g.(r, x)|=
K,.

The observation process is given by
2.2) dy, = h(&) di+dv,, »E€R™ y=0, 051=T.

In the above equations w=(w' -+, w") and v=(v', -+, v"') are independent
Brownian motions. We also assume the following:

(Ay) h:R*-> R™ is Borel measurable, continuously differentiable in x, and for
some constant Ks, [h(t, x)|+]h(t, ¥)| = K.

Remark 2.1. These hypothieses can be weakened. For example, in (A;), h can be
allowed linear growth in x. Because g is bounded, a delicate argument then implies
the exponential Z of (2.3) is in some L7 space, 1 < p <co. (See, for example, Theorem
2.2 of {13].) However, when h is bounded, Z is in all the L” spaces (see Lemma 2.3).
Also, if we require f to have linear growth in u, then the set of control values U can
be unbounded as in [14]). Our objective, however, is not the greatest generality but is
to demonstrate the simplicity of the techniques of stochastic flows.

Let P denote Wiener measure on C([0, T], R") and u denote Wiener measure
on C{[0, T], R™). Consider the space = C([0, T}, R")x C([0, T], R™) with coordi-
nate functions (w,, ;) and define Wiener measure P on {) by

P(dw, dy)= IA’(dw);u(dy).

DeriniTION 2.2, Write Y ={Y;} for the right continuous complete filtration on
C([0, T], R™) generated by Y?=o{p,: s =1t}. The set of admissible control functions
U will be the Y-predictable functions on [0, T]1x C([0, T], R™) with values in U.

For ue U and x< R write £,(x) for the strong solution of (2.1) corresponding
to control u, and with £,(x)=x. Write

23) z=enn (| mezoor an -4 [ g2 ar)

and define a new probability measure P" on § by dP"/dP = Z +(x,). Then under P",
(é0.(xo), y1) is a solution of (2.1) and (2.2), that is, &;,(x,) remains a strong solution
of (2.1) and there is an independent Brownian motion v such that y, satisfies (2.2). A
version of Z defined for every trajectory y of the observation process is obtained by
integrating by parts the stochastic integral in (2.3).

Lemma 2.3, Under hypothesis (A} for t 27,

E[(Z5,(x))7]1<00 forallue Uand allp, 1=p<co.
Proof.

Zoxp)=1+ L Zo,(xo)h(&3,/(x0))" dy,.

W ot it e o
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Therefore, for any p there is a constant C, such that
' p/2
E[(Z;(x0))" 1= C, [1 +E (J (Z5,(x0))*h(£5,(x0))? dr) ]
0

The result follows by Gronwall’s inequality.
Cost 2.4. We shall suppose the cost is purely terminal and given by some bounded,
continuously differentiable function

c(&o,1(x0)),

which has bounded derivatives. Then the expected cost, if control ue U is used, is
J(u) = E[c(£o.1(x0))).

In terms of P, under which y, is always a Brownian motion, this is

(2.4) J(u)= E[Z§ (xo)c(£6.7(%0))]-

3. Stochastic flows. For ue U write

t

H
(3.1 §:'.,(x)=x+J S0, E5(), ) d,-+j g1, £1,(x)) dw,

5 s
for the solution of (2.1) over the time interval [s, 1] with initial condition £ (x)=x.
In the sequel we wish to discuss the behavior of (3.1) for each trajectory y of the
observation process. We have already noted that there is a version of Z defined for
every y. The results of Bismut [5] and Kunita [16] extend easily and show the map

§_Ig:,: Rd_) Rll

is, almost surely, for each ye C([0, T], R™) a diffeomorphism. Bismut [5] initially
gives proofs when the coefficients f and g are bounded, but points out that a stopping
time argument extends the results to when, for example, the coefficients have linear
growth.

Write [|€"(xo)]l: = SuPoz=: 1€0.5(X0)l. Then, as in Lemma 2.1 of [13], for any p,
1 = p <00, using Gronwall’s and Jensen’'s inequalities,

)

almost surely, for some constant C,

Therefore, using Burkholder’s inequality and hypothesis (Az), [|€“(xo)|i » is in L”
forall p, I=p<.

Suppose u*e U is an optimal control; then J(u*)=J(u) for any other ue U.
Write £%(-) for £4(-). The derivative a¢%,(x)/ax is the matrix solution C, of the

amsintina fne o< ¢
Cquauln 08 S =,

“f“(xo)" F=C (1 +|xo|”+ L g(r, ‘fg.r(-\'o)) dw,

(3.2) dC,=f(1, £%,(x), u*)C, dt+ ¥ g1, £4,(x))C, dwi with C,=1.
iml

Here I is the n x n identity matrix and g'” is the ith column of g. From hypotheses
(A») and (A;), /. and g, are bounded. When we write [|Cl|, =supyz.. |C\|, an applica-
tion of Gronwall’s, Jensen’s, and Burkholder’s inequalities again implies [|C|| r is in
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L? for all p, 1=p<o. Consider the related matrix-valued stochastic differential
equation

' n [t
D,=I-—J D.fo(r, £5(x), u¥) dr= % j D,g¥(r, £5,.(x)) dw!.

K 1=]

(3.3) )
+2 J D,(g{(r, £5,(x)))* dr.

i=1

Then it can be checked that D,C, = I for r = s, so that D, is the inverse of the Jacobian,

that is, D, = (9£%,(x)/ox)~". Again, because f, and g, are bounded we have that || D],
is in every L, 1 =p<co.

For a d-dimensional semimartingale z, Bismut [5] shows that £%,(z,) is well-defined
and gives the semimartingale representation of this process. In fact if z,=
z,+ A, +Y" | |4 H,dw.is a d-dimensional semimartingale, Bismut’s formula states that

g::f’(zl)=z( I‘ (f(r g;r(zr), llx)+ Z g(l)(’ ‘fs. (“r) t‘x) af"("’)H

(3.4) fa § (" (H,, H,)) dr

+j ____agi,iz,) dA+ 3 [ (g""(r,f (zr))+a§”(~,)H ) dw,.

=1 Js
DeriNiTioN 3.1. We shall consider perturbations of the optimal control u* of the
following kind. For se€ [0, T), h>0such that 0 = s <s+ h = T, for any other admissible
control fie U and A€ Y, define a strong variation of u™* by
u(t, w)= {u*(t, w) if (r,w)g[s, s+h]xA,
a(t,w)y if(,w)e[s s+h]xA.
Applying (3.4) as in Theorem 5.1 of [7], we have the following result.
THEOREM 3.2. For the perturbation u of the optimal control u* consider the process

t * (o ~%
(3.5) z =x+[ (o—%é'—)> (f(r, £5A2,), w) = f(r, £5,(2,), uF)) dr.

Then the process £%,(z,) is indistinguishable from £ ,(x).
Proof. Note that the equation defining z, involves only an integral in time; there
is no martingale term, so to apply (3.4) we have #, =0 for «ll i. Therefore, from (3.4)

f
E(z)=x+| f(r, &5z, uF) dr

Js

(¢ * (o ¥ (2 Y\ 1
| (P QRN 1 e, -5 52, i

Js 0.‘(

(¢

+1 gl §i(z) dw,.

vs

However, the solution of (3.1) is unique so

fffl(zt) = Lf;’,l(x)

Remark 3.3. Note that the perturbation u(r) equals u*(¢) if t>s+h so z,=z.4,
if t>s+h and

§§f!(zl) = ff::(zs-r-h) = gf*-h,l(glt‘,t*‘h(x))'

L
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4. Augmented flows. Consider the augmented flow that includes as an extra coor-
dinate the stochastic exponential Z¥, with a “variable” initial condition ze R for
Z*,(+). That is, consider the (d +1)-dimensional system given by

£ (5) = x+ J'f(r, £5,(x), u¥) dr+ J o1, £5.x)) dw,,

Z5(x,7)= z+J 25, Dh(EL) dy,-

Therefore, from the first equation in the proof of Lemma 2.3 we have
Z3(x, 2)=12Z5,(x)

=26XP(J h(g5(x))" dy, _—,[ h(§E(x))? dr)

and we see there is a version of the enlarged system defined for each trajectory y by
integrating by parts the stochastic integral. The augmented map (x,z)~
(£¥,(x), Z%(x,2)) is then almost surely a diffeomorphism of R*''. Note that
8&¥(x)/0z=0, of/9z=0 and ag/az=0. The Jacobian of this augmented map is,
therefore, represented by the matrix

& _( agE(x)/ax 0 )
" \oZE(x, 2)/ox  9ZF(x,z2)/az)
and for 1ISi=d as in (3.2)

azsa,(\ z) _ - J ‘ ( 20 Z)ah’(ng,(x)) 96k (x)
X, 1=l Js afk a.\',
4.1) «

+ hf(é:;k’r(x)) M)

(Here the double index k is summed from 1 to n.)

We shall be interested in the solution of this differential system (4.1) only in the
situation when z=1, so we shall write Z¥(x) for Z%,(x, 1). The following result is
motivated by formally differentiating the exponential formula for Z¥(x).

LEMMA 4.1.
OZEE) _ e 2£)
S5z [ e 22 )

where v=(v', -+ -, v") is the Brownian motion in the observation process.
Proof. From (4.1) we see aZ%,(x)/ox is the solution of the stochastic differential
equation ¢

#* *
@2 2 [ (2 gt o+ 2t o0 L) gy,
Write
L =280 || he 22 )
where

y, = h(£¥,(x)) dt +dv,.

Qe
' ' '

' Wt
' '
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Because
I
Zi(x)=1+ J Z3,(x)h'(E5(x)) dy,
the product rule gives
! g:r r agf(r 2 0
L, (x)= Zi'fr(x)hx ox dv, + hy- PRl dv, | Z3(x)N'(£5,(x)) dy,

s
5“
ax

j‘ Z35(x)'(£5,(x)) - by
§ST

=J L. (x)I'(£¥(x)) dy,+ f ZE(x)h,- - dy,.

Therefore, L,,(x) is also a solution of (4.2), so by uniqueness
aZ;‘ x
Ly (o =252,

Remark 4.2. As noted at the beginning of this section we can consider the
augmented flow

(x,2)» (£5(x), Z%(x,2)) forxeR% zeR,

and we are only interested in the situation when z =1, so we write Z¥(x).
LemMma 4.3. Z%(z,)=Z}(x) where z, is the semimartingale defined in (3.6).
Proof. Z3,(x) is the process uniquely defined by

(4.3) Zo(x)=1 +J ZiAAx)N'(§5,(x)) dy..

Consider an augmented (d + 1)-dimensional version of (3.5) defining a semimartingale
Z,=(z, 1), so the additional component is always identically one. Then applying (3.4)
to the new component of the augmented process, we have

Zi(z)= 1+J Zi(z )W (E5(z,)) dy,

14 j ZE ()88 (0)) dy,

by Theorem 3.2. However, (4.3) has a unique solution so Z¥,(z,)=Z! (x).
Remark 4.4. Note that for t>s+h

Zifl(zl) = Zi:(zwh)-

5, The minimum principle. Control u will be the perturbation of the optimal control
u* as in Definition 3.1. We shall write x = ¢§,(x,). Then the minimum cost is

J(u¥) = E[Z§r(xo) c(£5.7(x0))]
= E[Z8:(%0) Z7(x)c(£E7(x))].
The cost corresponding to the perturbed control u is
J(u) = E[ZF (x0) Z5x(x)e(€5r(x))]
= E[Z§ (%) Z %1 (2es1, ) e(E51(Z0an))]

i
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by Theorem 3.2 and Lemma 4.3. Now Z¥,(-) and ¢(&£5(-)) are almost surely differenti-
able with continuous derivatives and z,, given by (3.5), is absolutely continuous.
Therefore,

J(u) ~J(u*) = E[Z§(xo( ZE7(zan) (&0 (zeen)) = ZEr(x) (£ (x)))]

s+h
=E “ (s, 2)(f(7, £5(z.), uF) = f(r, €5(x), uF)) dr]

5

where by Lemma 4.1

Fls, z)= Z:is(x())zifr(zr){ ce(€5r(2))) ______6§§;7-r;z,)

T F) % 6§* -1
reteznta) | neeten e ) (B )
Note that this expression-gives an explicit formula for the change in the cost resulting
from a variation in the optimal control. The only remaining problem is to justify
differentiating the right-hand side.
From Lemma 2.3, Z is in every L7 space, 1= p <0, and from the remarks at the
beginning of § 3, Cr=3£¥;/3x and Dy = (0¢%+/0x)™" are in every L7 space, 1 = p <.
Consequently, T is in every L” space, | Sp <0,

Therefore,
s+h
J)y=J(u*)= J EUI(s, z,) = T(s, X)) f(r, €%(2.), u) = f(r, £5(2,), uf))] dr

{30

+ EL(I'(s, x) =T (r, x))(f(r, £5(2,), w.) = f(r, £5.(2,), uF))] dr
*s+h

+ E[X(r, x)(f(r, £5(2,), u) = f(r, £8,(z2,), u¥)

~f(r, £5,(x), u,) + f(r, £5(x), w¥)) 1 dr

s +h

+ E[T(r, x)(f(r, £5,(x0), u,) = f(r, £5.,(x0), uF))) dr

= L(h)+ L(h)+ L(h)+ L(h), say.

Now,

s+h

i [ B 2) =T 000l )

£Kh sup ETIC(s, 2/) =T (s, )1+ £ (XD )],

s+h

|L(h)l = sz EQIT(s, x)=T(r, )I(1+ " Cxo) s e)] dr

= th sup E(IF(S, x) h l‘(r’ X)Kl + “gu(x())"s + h)]»

syrasrh

s+h

ris ks [ EORG Olgs e - £

£

=Kh sup  E[IF(r )l [|€5.(x) = £5.00) 500

sHras+h
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The differences |I'(s, z,) = I'(s, x)|, [I'(s, x) =I'(r, x)| and }&5.(x) = &E.(x)|lcss are all
uniformly bounded in some L7, p=1, and

lim{I'(s, z) =T, x)|=0 as.,
lim|I(s,x)-T'(r,x)|=0 as.,
lim €% () = ££.() ] = 0.

Therefore,

im |I'(s, z.) =T'(s, x)[l, =0,
lim (s, x)=T(r,x){,=0, and
fim 159~ 0l ), =0 for some p

Consequently, lim,..q h "' L(h) =0, for k=1,2,3.
The only remaining problem concerns the differentiability of

sth
L(h)= j EL[I(r, x)(f(r, &5 (x0), u,) = f(r, &, (x0), )] dr.

The integrand is almost surely in L'([0, T1) so lim,_o h~'L,(h) exists for almost every
s€[0. T]. However, the set of times {s} where the limit may not exist might depend
on the control u. Consequently we must restrict the perturbations u of the optimal
control u* to perturbations from a countable dense set of controls. In fact:

(1) Because the trajectories are, almost surely, continuous, Y, is countably gener-
ated by sets {A, }, i=1,2, - - for any rational number pe[O T]. Consequently, Y, is
countably generated by the sets {A,,}, p=t.

(2) Let G, denote the set of measurable functions from (Q, Y,) to U< R (If
u e U then u(1, w) € G,.) Using the L'-norm, as in [8], there is a countable dense subset

H, ={u,} of G,, for rational pe[0, T]. If H,=U,., H, then H, is a countable dense
subset of G,. If u,, € H, then, as a function constant in time, u,, can be considered as
an admissible control over the time interval [+, T for = p.

(3) The countable family of perturbations is obtained by considering sets A,, € Y,

functions u,, € H,, where p =1, and defining as in (3.1) the following:

A (5 ) {u*(s w) if (s, w)&[t, T]X A,
uk(s, w)y= .
" w,(s,w) if (s,w)elr, TIxA,,.

Then for each i, 4, p

(1) limh f ELI(r, )/, €6,430), 165) =10, &, (x0), )] lr

exists and equals

E[I(s, x)(f(s, fo:("o u,)—f(s, ‘fo‘(xo) u: ))IA,]

for almost all s€[0, T]. Therefore, considering this perturbation we have
lim h™'(J (u) = J () = E[U(s, X)(f (s, €8(x0), ) =/ (s, &850}, ¥, ]

=0 for almost all s€(0, T].

o=
B
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Consequently there is a set S< [0, T] of zero Lebesgue measure such that, if s S, the
limit in (5.1) exists for all i, j, p, and gives

E[F(S, x)(f(s) g(*),s(x())’ “jp) —f(s3 §(°;<_;(.\‘o), u*))[/\,‘,] g 0'

R
g Using the monotone class theorem, and approximating an arbitrary admissible control
u e U, we can deduce that if s£ S, then
(5.2)  E[T(s, x)(f(s, €& (x0), W) =15, EEo(x0), u*NI,]Z0 for any A€ Y,.
¥ Write

afs r(")

(gl Tm))( J hs(fo«r(\‘o))agw(\) )‘ st{x}]

3

pelx)= [Cf(fo 7(Xo))

where, as before, x = _53‘_,(.\'0) and E* denotes cxpectation under P*= P"". Then p,(x)
is the co-state variable and we have in (5.2) proved the following “conditional”
minimum principle.

THeEOREM 5.1, If u¥e U is an optimal control there is a set Sc[0, T} of zero
Lebesgue measure such that if sg S

E*[p(x)(s, x, uH Y= E¥ [ px)f (s, x,10)| Y.] as.

That is, the optimal control u* almost surely mininuzes the conditional Hamiltonian and
the adjoint variable is p.(x).

6. Stochastic open loop controls. We shall again suppose the state of the sysiem
is described by a stochastic differential equation

(6.1) dé =f(1 &, u) dt+g(s, &) dw,, LeRY &G=x,, 0sS1=T

where x,, f, and g satisfy the same assumptions A,, A., and A; as in § 2.

Suppose w=(w',++ -, w") is an n-dimensional Brownian motion on a probability
space (Q, F, P), with a right continuous complete filtration {F,}, 0= = T. Rather than
controls depending on some observation process y we now consider controls that
depend on the “noise process™ w. These are sometimes called “'stochastic open loop™
controls [4].

DerFiniTiON 6.1. The set of admissible controls V will be the F,-nredictable
functions on [0, T]x Q with values in a compact subset V of some Euclidear space R’.

Remark 6.2. For each ue V there is, therefore, a strong solution of (6.1) and we
shall write ¢,(x) for the solution trajectory given by

1 t

S(r, &6.(x), u,) l1f+J‘ glr, &% .(x)) dw,.

<

(6.2) §{“.,(x)=x+J'

A

Again, because u is a (predictable) parameter the results of [2], [5], or [16] extend to
this situation, so the derivative 3¢;,/3x(x) = C}, exists and is the solution of

! ” !

(6.3) Ci’ﬁ”[ Je(r, £0,(x), u,)Cldr+ ¥ J g(r, EL()CY, dwh
5 A=t

Suppose DY, is the matrix-valued process defined by

" L):l,r=1 J D's‘l(ff r f”(Y), ll,)— Z g(“ 'vl.r(-\'))2> (1)‘
(6.4)
-2 J DY, gd(r, £1,(x)) dwh.

k=1
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Using the Itd rule as in § 3 we see that d(D},C¢,)=0 and DY,Ci,=1, s0
D, =(C5)™"
As before, if
" (xo)ll: = sup 1£5.(xo)l,
O=ssit

IC"llr= sup ICd,  ID"llr= sup |Dg.d,
C=ssT 05ssT

then applications of Gronwall’s, Jensen’s, and Burkholder’s inequalities imply that

& (xo)llx, NIC“ll+, and [D"|l+

are in L7 for all p, 1 = p <.
Cost 6.3. As in § 2, we shall suppose the cost is purely terminal and given by a
bounded C? function

e(&o,7(xo0))-
Furthermore, we shall assume
fe(o)l+ ()] e (X = Ka(1+|x]7)

)

for some g <cc.
The expected cost if a control v V is used, therefore, is

J(u) = E[c(&6.1(x0))]. -
Suppose there is an optimal control u*€ V so that
J(w¥)=J(n) forallueV.

Notation 6.4. If u* is an optimal control, write £&* for &, C* for C*", etc.
DEerINITION 6.5. Consider perturbations of u™ of the following kind. Fors [0, T,
h>0suchthat 0S s<s+h= T and Ae F, define, for any other il € V, a strong variation
of u* by
Wty w) = {lf*(t’ w) ?f (, W)g[s, s+h]xA,
a(e,w) if (r,w)efs, s+h]xA

The following resuit is established exactly as Theorem 3.2.
THEOREM 6.6. For any perturbation u of u* consider the process

(6.5) z,=x+J, (%‘?(L)) ‘(f(r, E5lz), ) = f(r, £5(2.), u7)) dr. ;
Then the process £¥,(z,) is indistinguishable from £, ,(x).
Note if > s+h, £5,(2,) = £5(z001) = EXenilEvsn(X)).
7. An open loop minimum principle. Now
J(u*) = E[c(£5:1(x0))]
= E[c(&5+(x)))

where x = &£,(x).
Similarly,

J(u) = E[c(&.7(x0))]
= E[c(&5r(x)]
= E[c(£¥r(z0n))].

i
[T
\ V‘::f;;zk‘f}@ i

- - - S [ —
A e SeT T o TSR i e S S ag T e U T
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Therefore,
J(u)=J(u*)= E{c(£r(z0en)) = c(E5r(x))].

Because £¥,(-) is differentiable this is

s+h -1
= E [j "‘(ff’l(‘r)) ags z ("r) ' (3§sr ("r)) (f()', g::fr(zr), “r)

<

(7.1)
—~f(r, €5,(2,), u¥)) dr].

As in § 5, this gives an explicit formula for the change in the cost resulting from
a “strong variation” in the optimal stochastic open loop control. It involves a time
integration over [s, s+ /] and, again, the only remaining problem is to justify the
differentiation of the right-hand side of (7.1).

Write

1
l‘(y, n "r)_CE(EtT(-r))ag T(-'r)( ( ))
and

px)= [ce(fo T(\o))__(\)“:]

7.2 - -
72 = £[1(s, 5, )| £,
where, as above, x = £§,(x,).

Then arguments similar to those of § 5—but in fact simpler because Z is not
involved—enable us to show that there is a set S< [0, T] of zero Lebesque measure
such that if s¢ S,

E[Y(s, 5, X)(f(s, £6.:(x0), u) = f(s, £5.(X0), 1¥)) 1412 0

forany ue Vand Ac F,.

That is, in terms of the adjoint variable p,(x) we have the following minimum
principle for stochastic open loop controls.

Tueorem 7.1, If u*e V is an optimal stochastic open loop control there is a set
S<{0, T] of zero Lebesgue measure such that if s¢ S

PX(s, X, u®) = p(xX)f (s, x, u)  a.s.

Jor all we V. That is, the optimal control u* almost surely minimizes the Hamiltonian

with adjoint variable p.(x}.

Remark 7.2. Under certain conditions the minimum cost attainable under the
stochastic open loop controls is equal to the minimum cost attainable under the Markov
feedback controls of the form u(s, & ,(x,)). See for example [3], [12]. If uy, is a
Markov control, with a corresponding, possibly weak, solution trajectory £"v, then uy,
can be considered as a stochastic open loop control u,,(w) by putting

up (W) = ups (s, €04 (X0, W)).

This means the control in effect “follows™ its original trajectory £“~ rather than any
new trajectory. That is, the control is similar to the adjoint strategies considered by
Krylov [15]. The significance of this is that when we consider variations in the state
trajectory ¢ and derivatives of the map x- & ,(x), the control does not react, and so
we do not introduce derivatives in the u variable.
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If the optimal control «* is the Markov, then the process &* is Markov and
ps(x)=E[I'(s, 5, )| F]

(7.3) = E[I'(s, 5, x)| x].

8. The adjoint process. Suppose the optimal stochastic open loop control u* is
Markov. The Jacobian a¢%y/ax exists, as does (9¢%7/6x)" and higher derivatives.
THEOREM 8.1. Suppose the optimal control u* is Markov. Then

Pps(x) = E[c;(&§7(x0) Co ]~ L Pr(&o.(x0)Mfe(r, €8.(Xo), u¥) dr
+‘[ ]7\(}', §(’;.r(x0))g(r, §§,r(x0)) dW,.
0

- J;) 17x(", fgtr(xo))g(rs §é<‘,(.\‘o))g§(r, §(’;<.r(x0)) (1".

Proof. Write f¢(r) for fe(r, &&,(x), u¥} and g(r) for g(r, ££,(xy)), etc. By unique-
ness of the solutions to (6.1)

8.1 Ea.r(xo) = E51(£5.(x0))
so, differentiating,
(82) CO,T = Cs,TCOAs

where Cor=C¥, etc. (without the *).
From (7.2) and (7.3)

p(x)= E[Cg(ffir(-\'o))cv,ﬂ F],
so from (8.2)
(83) px(x)c(),r = E[cé(.E(%‘.T(XO))CO. I" Fs],

and this is a (P, {F,}) martingale. Write x = £ .(xo), C = C,,. From the martingale
representation result [10], the integrand in the representation of p,(x)C as a stochastic
integral is obtained by the It5 rule, noting that only the stochastic integral terms will
appear. These involve the derivatives in x and C. In fact, by considering the system
&, with components &5, and C,, and any real C? function @, the martingale

M= u[‘p(fo.'r' F]= E[(b(‘fo.T i-", Cl=V(s,x,C)

= V(O; Xo, I) +J Vx(r) féc,r(xoﬁ CO,r)g(r) dW,
0

ket

n
A A
+ Z J VC(r §0 ,.(\'o), CO r)g< )(’ )Co., dW, .
0
herefore, for the vecior martingaie (3.3)

p«(x)C = E[¢(£0,7(x0)) Co,7]+ L px(r, £5,(x0))g(r) dw,Co,

+ ’}:“ J pr(§0 r(XO))g“)(r) CO,r de .




o
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Recall that Dy, = C™, so forming the product of (6.4) and (8.4) by using the Itd rule,
we have

ps(x) = (I)x(x)C)DO.s

= E[c(£51(x0)) Cor] ~ J’ PAEG (X)) fe(r) dr
0

i f P E8A(x0)) g (r) dﬂ’f*f‘kih[ PrEEAx0)) (g€ (1)) dr
o =

k=1 1]

+J Pt €6.,(x0))g(r) d“’r+k§l J P8 (x0)) g (r) dw;

0

“é;[ Pt 685 ) dr 3 J P X)) dr

Y k=t Jo

]

= E[e{£51(x0) o]~ Jo P& (o)) fe(r) dr

5 n s

+ J P, €5,(x0))g(r) dvw, - L J P, €5,(x0))g(r)ge(r) db,
o = 1]

thus establishing the result.

This verifies by a simple, direct method the formula of Haussmann [12] without
any requirement that the diffusion coefficient matrix gg* is nonsingular. However we
do not identify p.(x) with the gradient of (he minimum cost process; this follows from
arguments as in [12].

9. Conclusion, Using the theory of stochastic flows the effect of a perturbation of
an optimal control is explicitly calculated in both the partially observed and stochastic
open loop cases. The only difficulty is to justify the differentiation. The adjoint variable
p{x) is explicitly identified,

TueoreMm 9.1. If [ is differentiable in the conirol variable u, and if the random
variable x = £§ (Xy) has a conditional density q,(x) under the measure P*, then the
inequality of Theorem 5.1 implies

o ; ] af
¥ (u(x) = uf(s) J I'(s, x) == (s, x, u™)q.(x) dx = 0.
R4 on

-4 ]

This is the result of Bensoussan’s paper [1].
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% Abstract. Using stochastic flows a minimum principle is obtained when a diffusion is
& controlled using stochastic open loop controls. An equation for the adjoint process is then
):‘i derived using an explicit formula for the integrand in a certain stochastic integral.
ally By
‘.fr:;T
Ery .
this 1. Introduction.
': There have been many proofs of minimum principles in stochastic control. For a small
of 13 “g_. mple sce the works of Kushner [15], Bismut [2], Haussmann (10}, {11}, [12], Davis and
% Varaiya [6], and the book by Elliott [8]. In this paper we consider a diffusion and stochastic
hnear
ystems. open loop controls, that is, controls which are adapted to the filtration of the driving
Brownian motion process. For such controls the dynamical equations have strong solutions,
174. and the results on the differentiability of the solution, due originally to Blagovescenskii and
ast Freidlin (1), can be applied. The work of Kunita [14] and Bismut [2] on stochastic flows

cnables the variation in the expected cost, due to a perturbation of the optimal control, to

be calculated explicitly. The minimum principle follows by differentiating this quantity. ;

R AL ¥ R S R t T o

If the optimal control is Markov the stochastic integral representation result of [9) is

’ applied to give an expression for a quantity associated with the adjoint process. Stochastic
& calculus is then used to derive the equation satisfied by the adjoint process.
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2. Dynamics.

Suppose the state of a system is described by a stochastic differential equation:
d& = f(t) eh u)dt + g(t) &)dw‘
GeRY, E=z0, 0<t<T. (2.1)
The control parameter u will take values in a compact subset U of some Euclidean space R*.
We shall make the following assumptions.
A f 2 [0,T) x R% x U — R% is Borel measurable, continuous in u for each (t,z),
continuously differentiable in z and for some constant K

(1 + [z (¢ 2 u)| + | fe (8, 2, u)] < K.

Asz: ¢:[0,T|]x R¢ — R8®R™ is a matrix valued, Borel measurable function, continuously

differentiable in z, and for some constant K3

Ig(t)z)l + lgz(t)z)l S KQ-

The columns of g will be denoted by ¢®) fork =1,...,n.
As: w = (w!,...,w") is an n-dimensional Brownian motion on a probability space

(Q, F, P) with a right continuous, complete filtration {F;}, 0 <t < T.

DEFINITION 2.1. The set of admissible controls [ will be the Fy-predictable functions on

[0,T] x Q with values in U. These are sometimes called ‘stochastic open loop’ controls, [3].

REMARKS 2.2. For each u € U there is, therefore, a strong solution of (2.1), and

we shall write & (z) for the solution trajectory given by

t t
€4 (z) =z + / F(rr68, (2), ur)dr + / o(r, €%, (=))du, (2.2)

Then, because u is a (predictable) parameter, the result of Blagovenscenskii and Freidlin

e . 9& . . .
[1] extends to this situation, sc the Jacobian —gfz-"-(z) = Dy, exists and is the solution of

t
Dy =1 +/ fe(r, &5, (z),u,)D:",dr +
e

noot
> [ e @Dyt @

k=g 74
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Here I is the d x d identity matrix. In fact, if the coefficients f and ¢ are C* the map
z— £ (x) is CF L.

Consider the matrix valued process H defined by:

:l= / H Lg(") 6” ))
-3 / B o) (2, () 24

Then using the Ito rule we see d(H, D¥;) = 0 and H}, D}, = I, s0 Hyy = (D).
Write [|€“(zo)ll: = sup |&, (z0)]. Then, as in Lemma 2.1 of [12], for any p,
0ge<t

1 £ p < o0, using Gronwall’s and Jensen’s inequalitics

e ol < 01+ bl | [ o, 68, (o)

almost surcly for some constant C. Therefore, using Burkholder’s inequality and hypoth-

esis Az, 1¢%(zo)llr isin LP forallp, 1< p<oo. Write

ID%llr = sup |Do,|
0<s<T

1H llr = sup [Hg,l.
05#<T

Then, because f¢ and g; are bounded, an application of Gronwall’s, Jensen'’s and Burk-

holder’s incqualities again implies
D%l and |H®|l7 arein LP forallp, 1< p<oo.

COST 2.3. Suppose for simplicity that the cost associated with the process is purely

terminal and given by a bounded C? function

(€. (%o))-

Aq: We suppose |e(z)] + [ez(z)] + [ez2 (z)] € K3(1 + [z]9) for some ¢ < co.
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The expected cost if a control u € U is used is, therefore,
J(u) = Elc(£5:x (zo))l-
We shall suppose there is an optimal control ©* € U so
J(u'y<J(u) forall uel.

NOTATION 2.4. Ifu® is an optimal control write £ for €*°, D* for DY ete.

REMARKS 2.5. Consider a d-dimensional semimartingale of the form
=2z, + A

where A is a predictable bounded variation process. Then Kunita’s formula [14] for the

composition of processes can be applied, (see also Bismut [5]), and we have

t
Eala) =2+ [ S0€0 (e ut)ar
4
a6, =~ " & !
+f DY [ 69 65 et (25)
DEFINITION 2.6. Consider perturbations of the optimal control u* of the following kind:

For s € [0,T), h > 0 such that 0 € s < s+ h < T, and A € F, define, for any other

admissible control u € U,

u'(t,w) if(t,w)éls,s+hixA

utw) = { i(t,w) i (t,w) € [s,s + h] x A.

Applying (2.5) we have, similarly to Theorem 5.1 of [4], the following result.

THEOREM 2.7. For the perturbation u of u* consider the process

a=z+ /“ (é%'z(—z'—))" (f(rEop (2, wr) = [(rEop (2r)up))dr. (26)
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Then the process &, () is indistinguishable from &}, (z).

PROOF. Substituting (2.6) in (2.5) we see

el = =+ [ 0065, o))
+ /‘, (86:51(2')) (ae:'a'iz'))-l (f(r,f:',, (2r)yur) —j(r,f;'r(z,),u;))d,

+f g5, (20)) du

becav

t
4

=z [ e, e + [ ol €, ar))dur

However, the solution to (2.2) is unique 50 &, (2r) = £ (2)-
There
REMARKS 2.8. Note that u(t) = w'(t) if t > s+ hso 2 = z4s it > s+

Therefore

Becau:
[ J

This gi

€ag(z) = o (e ) = Eoang (6304 (=)

ift>s+h.

in the «
to justi
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3. A Minimum Principle.

Now
J(u*) = Ele(&,r (20)))
= Ele(&r (2))] where £ = €0, (20),
because, by uniqueness, {3 (zo) = &, (z). Similarly,
J(u) = Elc(&r (=0))]
= Ele(¢r (2))]
= Efe{&or (ze0)))-
Therefore,
J(u) = J(u*) = Ele(€ir (ze4n ) = (&7 (2))]:

Because ¢, ¢ (-) is differentiable this is

=5 [/.m celp (o) 2252 ) (Bi L2y

(f(r & p (2r)yute) = f (i €5, (2e) ) )dr

This gives an explicit formula for the change in the cost resulting from a ‘strong’ variation
in the optimal control. It involves only a time integration. The only remaining problem is
to justify the differcntiation of the right hand side of (3.1).

a ; r a :r T -
Wreite ['(s,r,2,) = celbor (2¢)) E'Jatx(z )( féz(z )) )
Then

~+h
J(u) = J{u') = / E[(I‘(s, rz) - l‘(s,r,z)) (j(r, & s (2r)s u,) —j(r, & r(2r)s u;))]dr

"

E[(r(
+/ E[I‘ (r,r 2} f(r,
~f(r, &, (), ur) + I(r, €, (2), u;))]dr

f:,r (zr)» “r) - /("9 f:,r (zf)’ u:)

b [ E[rn o)t 6, aoh, we) = 10065, (o), wi)]r
= Iy(h) + Iz (k) + Ia(h) + Is(h), say.

-

s,112) = L(rur, @) ([, €6, (ar), we) = 0y €6, (ar), )] ar

- .. i
! e
: Ea
KT o
H e
;
3
k3
1
¥
4
¢
n
4
)
1
L&
S
R24
R ok
SRk
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Now,

+h
R < Ko [ B[Nz = Tlor, 0+ 1€ zo)llans )

< Kih  sup E[[I‘(s,r,z,)—l‘(a,r,:z:)l(l-&-HE"(::O)[{H;,)]

i
) S Ks [ B[P ) = Pl l(1+ 1€ (o)lon ) dr

< Ksh sup E[[I‘(s,r,z,) ~T(r,r,z){(1 + IIE“(ro)||,+h]
+<r<s+h

+h
s (h)] < Ko / B[N r,2)l Iz = 2l dr

<Keh _sup  E[IT(rr,2)l 1z - 2usn ]
1rSa+h

The differences |T'(s, r, z,) = T(s, r, z)|, [I'(s, r, z) =T(r, r,z)] and [z~ z||,4a are all uniformly
bounded in some L7, p > 1, and

lim [L(s,r,2,) = I(s,r,2)] =0 as.

im |I'(s,r,z) ~ I(r,r,2)] =0 as.

r—+s

lim jjz — z}|,4+a =0.
arm i ot
Therefore,

rIin‘u IT(syrv2,) = T(s,r,z)]lp =0
rlim "F("'rvz) - I‘(r,r,z)", =0
and ’Il_% fl(llz = z|ls+a }ilp =0 for some p.

Consequently, Al_‘na R~V Iy (h) =0, for k =1,2,3.

The only remaining problem concerns the differentiability of

+A
1w = [ B[Pl 2o €5, aoly we) = fles €, (ao)s w2

The integrand is almost surely in L'({0,T}) so ’!l_.ns h=' I, (h) exists for almost every s €

{0, T}. However, the set of times {s} where the limit may not exist might depend on the
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control u, Consequently we must restrict the perturbations u of the optimal control u* to

perturbations from a countable dense set of controls. In fact:

>3 ool bk kA

1) Because the trajectorics are, almost surely, continuous, F, is countably generated

by sets {4}, £ = 1,2,... for any rational number p € [0,T]. Consequently F; is

countably gencrated by the sets {4}, r < ¢

2) Let G denote the set of measurable functions from (0, F) to U C R*. (fue U
then u(t,w) € Gy.) Using the L'-norm, as in {7}, there is a countable dense subset
H, = {u,,} of G,, for rational o € [0,T}. If H; = |J H, then H; is a countable
dense subset of Gy. If u), € H, then, as a t’unctionpsclonstant in time, uj, can be
considered as an admissible control over any time interval [¢, T for ¢t > p.

3) The countable family of perturbations is obtained by considering sets A;, € F,

functions «,, € Hy, where p < ¢, and defining as in 3.1

: Clow) () [T x Ay
u’-,(a,w) = . ,
v,(s,w) i (s,m) 2 {t,T] x Aqp.
Then for cach 1,7, p

s+A
tim k7t [T B[R 2 6 ol u3) = Sl 6 (ao)y w]dr (02
exists and equals
E[T(s,8,2)(1(s, &4 (0), wjp) = f(s, €, (2o}, '), |

for almost all s € [0, T].

Therefore, considering this perturbation we have
Jim A (I (u5,) = (') = E[Ts,,2)(/(5, €6, (20)s w3p) = I, €3 (20), ), ]
>0 for almoet all s € [0,T).

Consequently there is a set S C [0, T] of zero Lebesgue measure such that, if s ¢ S, the

limit in (3.2) exists for all 1,7, p, and gives

B[P (8,207 (8, &6, (20), 1) = [, &, (20), w*Da, | 20

aeont s S A AR A £ MR U2 S NI L% ¢ 00 o3 et S OB b AR A PRI EIF 0 v o ot 552 M st O P . 5 R Oaamr 100515 Kiomts w e Lol 74




Using the monotone class theorem, and approximating an arbitrary admissible control 3
u € U we can deducc that if s ¢ S f
E[r(s,s,z)(j(s, &, (z0), u) = (s, &0, (o), u'))!,q] >0 foranyucUand AGF,.
6y
Write ‘:

0 e oy 6r (@) “T
ple) = Elec(tor (s0)) =5 | ] = E[C(s,5,2) | £ G §

where, as before, z = &, (o). Then p;(z) is the adjoint variable and we have in (3.3) § consi
]

proved the following minimum principle: T highe
k]

THEOREM 5.1. Ifu’ € U is an optimal control there is a set S C [0,T]| of zero Lebesgue § THEC
measure such that if s ¢ S i
pi(2)f(s,2,u°) € p,(2)f(5,2,u4) as. F
§
That is, the optimal control u* almost surely minimizes the Hamiltonian and the adjoint g
variable is p,(z). H
§

REMARKS 3.2. Under certain conditions the minimum cost attainable under the % I
stochastic open loop controls is equal to the minimum cost attainable under the Markov, ?;: ness of
feedback controls of the form u(s, &, (o). See for example [2], [10]. If uas is a Markov %

¥
control, with a corresponding, possibly weak, solution trajectory £%M, then ups can be %
. . 3 so, difT
considered as a stochastic open loop contre! ups(w) by putting % 0 Gtk
%
uM(w) = uM(s, f&t‘ (xo,w)). ?
= where [
This means the control in effect ‘follows’ its original trajectory é¥M than any new trajectory. Z Fr
%
That is the control is similar to the adjoint strategies considered by Krylov [13]. The  :
significance of this is that when we consider variations in the state trajectory £, and
4
derivatives of the map z — £, (), the control does not react, and so we do not introduce % 5o from
1
derivatives in the u variable. §
i
7
:
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If the optimal control u* is Markov the process &* is Markov and

pi(z) = E[T(s,s,2) | £

= E[[(s,s,2) | z. (3.5)

4. The Adjoint Process.
Suppose the optimal control «* is Markov. As noted above, u* can and will be

a . a _l
considered as an open loop control. The Jacobian —g%z exists, as does (—gf;}) and

higher derivatives.

THEOREM 4.1, Suppose the optimal control u* is Markov. Then

(a) = Elee(tsr (zol Dor ] - [ " e (€4 (z0)) felrr &3, (20), ut)dr
+f " pa(r €5 (20)) 9 €6, (z0))dws
0

- /0 " e €3, (0))0(r, 6 (20) )0t (rs €31 (z0))dr-

PROOF. Write fe(r) for fe(r, &, (z0),u;) and g(r) for g{r, 5, (z0)), etc. By unique-
ness of the solutions to (2.1)
o1 (z0) = &7 (&6.4 (z0)) (4.1)
so, differentiating,
Dor = D1 Doy (4.2)
where Dor = Dy etc. (without the *).
From (3.4) and (3.5)
pi(z) = Elce(&or (20)) D | Fi

so from (1.2)

Pi(2) Do = Elee(&o,r (z0)) Dor | Fi] (1.3)
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and this is a (P, {F;}) martingale. Write z = §,(x0), D = Do,. From the martingale

representation result [9], the integrand in the representation of p,(z)D as a stochastic

K et A S R R S YT P

integral is obtained by the Ito rule, noting that only the stochastic integral terms will

appear. These involve the derivativ s in z and D. Therefore H (2]
4 . N 3
pu()D = Ele(éor (20)) Doz | + /0 s (r, €4, (z0))g(r)dw, Do, ., 13
[ : 4
+ 3 [ w6, (zo))of?) (1) Do st ()
k=170

-1 . , (5}

Recall from (2.4) that Ho, = D~! so forming the product of (2.4) and (4.4), using the Ito
rule: f6]
(7}

pe(z) = (p, (z) D)o,

= Blee(€37 (20)) Do | - /o pe (65, (z0)) e (r)dr

- [ ol + 3 [ e

8
(9}

P AT I T AT TSR SR g G AN B 104 et S

+ /0 Pa(r, &5, (20))a(r)dw, + 3 /0 pr(€5, (z0))g (r)duo? (10}
k=1
-2 /o P2 (r &, (z0))o(r)al? (r)dr = 3 /0 pe(€5, (o)) (@) () dr (11]
k=1 k=1
= Blec(Giz (=) Dor ] - [ (e (ao)) e r)ar 12
3 n P
[ peCr i Colotridon = 3 [t allotr)of? (e T
k=1 ;:
so cstablishing the result. fi (1) \
This verifies by a simple, direct method the formula of Haussman [10]. % “5] |
% I
&
A
%
%
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Solutions of Kolmogorov's forward and backward equations are obtamed by
considering a family of conditional expectations and the use of stochastic flows to
justify differentiation in the time variable. L 1989 Academic Press, Inc.

INTRODUCTION

Probabilistic solutions of the Cauchy problem for Kolmogorov’s forward
and backward equations have been known for many years. In [5, 6]
Kunita uses stochastic flows associated with forward and backward
stochastic differential equations to write down explicit forms of the solu-
tions. In fact he uses both forms simultaneously, in that he requires the
backward equation for the forward process to solve the Kolmogorov back-
ward equation, and the forward equation for the backward process to solve
the Kolmogorov forward equation. In this note we indicate how solutions
of the Kolmogorov equations can be obtained directly by differentiation in
the time variable of a family of conditional expectations. This is justified by
differentiating inside the conditional expectation, using the properties of
stochastic flows. Both the forward and backward Kolmogorov equations
are considered. As noted in [3], the conditional expectation is a solution
of Kolmogorov's equation because the bounded variation term n its semi-
martingale representation, using the Ito formula, is zero.
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DIRECT SOLUTIONS OF KOLMOGOROV’S EQUATIONS 27
. StocHasTIC FLows

Let w,=(w!,..,w") be m-dimensional standard Brownian motion
defined for all +>0 on a fixed probability space (2, F, P). Write (F,),5 for
the right-continuous complete filtration generated by w.

Suppose that we are given vector fields Xy, X, ., X,, on [0, 00)x RY
such that each X, is three times continuously differentiable with all
derivatives bounded. We can associate a stochastic flow with w and the X:

TugoreM 1.1 [2]. There is a map &:[0, )x [0, 0)xRYx Q2 -R
such that

(i) Jor 0<s<t and xeRY, &,(x) is the essentially unique solution of
the stochastic differential equation

A (x) = Xo(t, & (X)) di + X (1, & (X)) d, (L.1)

with &, (x)=x (we employ the Einstein summation convention when con-
venient);

(ii) for each s and t and almost all w, the map &, (-} has a version
which is twice differentiable in x and continuous in s and 1. The Jacobian
D, ,=0¢, fox is then a solution of the linearized equation

) oX, )
dD, = 56_\;0 (6, ¢ (x)) D, dt + -aX?' (1, &, (x)) D, , dw?; (1.2)

(iii) the second derivative 8¢, ,/6x* is well-defined for each x, s, 1.

Remark. The conditions we bave imposed on the coefficients of (1.1)
suffice to ensure that ¢, and D,, belong to L7(2) for all p>0. The
arguments to establish appropriate estimates are standard applications of
the Burkhoider, Jensen, and Gronwall inequalities, similar to those in
{1,4]. The conditions on the coefficients can be relaxed somewhat: those
employed here are fixed in the interests of simplicity.

Now restrict attention for the remainder of this paper to the time
interval [0, T}, where T is a fixed finite positive number. Censider the
trajectories with a fixed initial position x,e R% and assume that we are
given a function ¢(¢, r(x,)) of the final position at 1=T. Assume further
that ¢ is three times continuously differentiable with bounded derivatives.

Define the (F,)-martingale M = (M,)g<, < by setting

M, = E[c(So.r(Xo ) F].

It is shown in [3] that the uniqueness of the martingale representation
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M, =My +[§7.(s) dW!, where the integrands y(s) are predictable pro-
cesses, can be exploited to find an explicit expression for y,(s) and to solve
the Cauchy problem: in fact, if we set x =& (x,) and write (as in Section 2
below) M, =E, .[c(¢, +(x))]= V(1 x), then it is shown that V' is a solution
of the backward parabolic differential equation éV/é¢+ LV =0, with final
condition V(7| uy)=c(xr), where L is the operator

= $ nded § (5 o))
N ‘ 06'\.1 2!.}':!] Ko 1 Kk axiaxf .

fe=]

In [3] the Ito differention rule is applied to V(s,)x) to yield these results.
This requires the differentiability of J/ in ¢, which can be proved using
Kunita’s results [6] on the reverse time stochastic differential equation for
the reverse flow ES.,(-). Our purpose in this note is to show that this can
be avoided by a direct calculation of ¢V/ét. This approach has the advan-
tage that only the semigroup properties of the flow &,,, the Markov
property, and the independence of Brownian increments are required for
the proof.

2. DIFFERENTIABILITY

Because wy =0 for standard m-dimensional Brownian motion we observe
that

Fi=c{w:0<s<1t}
=Fl=c{w,—w,:0<r<s<t}.

More generally we shall write F¥=¢{w,~w,: u<s<t}. Therefore, if the
initial condition x, of the trajectory is known, by the Markov property and
independence of future increments

E[c(Ep.(xo) | F,) = E[c(&o, 1{x0)) | F}]
= E[c(&p.7(x0))|x]
=L, [c(&o,7(x0))]

= V(t, x), where x =&, ().

Now by the uniqueness of solutions of (1.1), and the semigroup
property,

So.r(X0) = &, 7(o,i(X0))

=&, ,4(x).




A e B R e v

>

TR B P D A,

DIRECT SOLUTIONS-OF KOLMOGOROV'S EQUATIONS 29

Therefore,
Vi, x)=E,[c(1(x))]
= E[c(S, (x)]F.]. (2.1)
Write
0o, , P&,
Ds‘l— a.‘(s ('\x)‘ ” EN 6,\‘§ ('\s)

Differentiating (2.1) in x we see

oV
-é; (ts x) = V,\“: '\‘) =E[c{(é.’l.7'(x)) Dt.'I'tFI]

2

i 4 )
5 (69 =Vt X)= Elcge(£14(x) D7 ® D7)
F [eeel& () W rl F,].

because the map x — &, (x) is C%

We now wish to investigate the diffcrentiability of V(r,x) in the ¢
variable. Under strong enough conditions on the coefficients X,, X; this
would follow as in [6] by considering the reverse time stochastic differen-
tial equation for the reverse flow &, ,(-). However, we will give a direct
proof.

THEOREM 2.1.  For any x& RY, V(i, x) is continuously differentiable in t
and

oV % i 2 ail. ¥
-3 (1, x)= i; Xolt, x) E [cf(c,_»,(.\')) —8_\_‘1
1 o nt . )
+3 Y. X X5, x) X1, x) E[8y 8c(&, r(x))]
ki=1l j=1i

= LV(1, x), where 0, =38/0x,.
Proof. For a given xe RY consider

(g vV LU ALE (L N3T
I XJELLOS, A

S S S o - e~
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. Using the mean value theorem, for 4> 0,
L Gl = o€ lx)

: = (&2 & i) — (€, 2(x)

o o
=ce(,.1(x)) ax (ErmndX)—x)

d
+l Y O AelE, A NMNE ) = x)Em (X)) = x™),

/\I=l

where [ —x] <[&, .4 (x) = x)] and x = (x}, .., x¥), where x e R
Now

4
él—li.l(x) =X+ ; Xo("» él-—-k.r(x)) dr
=i

t
+[ X&) dwe,
h

LY

$0 (&) (x)—x) is F'~* measurable. For the given x, ¢, 7(x) and 8¢, ,/0x
are [ measurable, so because the increments of Brownian motion are
mdependent .

E[Ce §:T(\o)) 6.\ (G: ndlX)— )]

= E|eunteurtom 22 B[ [ ot &t ) |
: = o(h). (22)

Write

d
Y 0k Oe(Cr-MMNEL - (%) = XNE ) x) = x7)

k=1

d

Y 8k 8e(€, s ()

ko de=1

= 0 0 ONEL 4 () = XD)(EM, (X)) = x™)

d
+ Y BB A MNNE ()= X)

ko d =t
X (é'l"—vh 1('\) - xm) = Sl + S;), say.
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Because the second derivatives of ¢ are bounded, and because & and D
belong to LP(Q2) for all p,
2\ 2
e ) )

s 1<k (2] (o -

(ELIE ) =~ x1* 1)

-

~2

[~ 82 & 29\ 172
<k (B[ (3 eotuntn =gz teoturl) ])

=o(h) (2.3)

because, as h— 0, (8%/8x%)(ce &, 1)(n) = (8*/0x%)(c =&, 7)(x), converges to
zero a.s. and is bounded. Again, because F¢~"* and F%. are independent

E[S,]= Z E[8; 8(co &, p)(x)] EQ(E] 5 () = XNET 1 1(x) = x™)]

Kd=1
= § Eloualeg, ]
ki=1
<L, & Bt K
=o(h). (24)

From (2.2), (2.3), and (2.4) dividing by />0 we have
lim & YVt ~h, x)~ V{1, x))

h=0

X1, .\)E[c;(c, ,(v))agt ]

"

+ Z Y X5, x) XU, x) E[3, @(c= &, 7)(x)].

AI:I j=1

This establishes the existence of the left-hand derivative of ¥ at 1. The
existence of the right-hand derivative is proved by considering

AWV, x)= V(i +h, x))
=h"YE[c(&, 1(x))] = E[e(€, s 2(x)])
=/1‘1(E[C(§z+lr.‘r(éz.: H;('\‘)))] _E[c(€l+lt.7(-\'))])-

Using the mean value theorem the limit as /1 — 0 is established as before,
introducing terms simifar to §;.




i Y) ELLIOTT AND KOPP

Therefore, —(@V/d1)(t, x) exists and equals L¥(t, x).

COROLLARY 2.2. Recalling the operator

” «"

L= X1, .\) + Z > X5, x) X1, ‘)a =
1

klul_)-l

we see that V(t, x)= E[c(Eo (o)) FOT is the solution of the backward
Kolmogorov equation

dv
e V=
= + L 0

with terminal condition
VT, x7)= E[e(Eo, r(xo)) | F3]
= c(.\f'r).

Remark 2.3. The situation when the coefficients X, are not bounded can
be treated by using stopping times. Equations of the form

év .
— 4 -
8I+Ll + =0

_ where ¢ is a smooth, bounded function, can be treated by introducing a
:  new coordinate £/*!, where

21 )= yexp{ [ 900 2o |

[ERIT

i

=y [ 090 Gl .

This is the Feynman-Kac form of the solution; see Kunita [5].

AT MY G b i

3. THE FORWARD EQUATION

We again work on the time interval [0, T]. Recall the o-field

Fr=c{w,—w,11<r<s<T},

and denote by {F%}, 0<t<T, the left-continuous complete filtration

ity Fl

RN
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generated by the F.. Suppose f(r) is a continuous {F4}-adapted process,
that is, f(r) is F7. measurable. Then the Ito backward integral

[ 0y,

is defined as the limit in probability of sums

n—1

Z f(lkvic 1)(“'.1/“; - W“),

k=0

where 1=1,<1,<---<t,=7, and the limit is taken as |d|=
max |t~ ] goes to zero. Kunita [5, 6] then defines the backward
stochastic differential equation

dEy= = Xo(x, &) ds— X(s, ¢ $) ﬁwﬁ.

For cach te [0, T] and xe R? this has a solution &, ;(x) with terminal
condition & ,(x)=x. We shall suppose the coefficient vector fields Y,
[=0, ..., m, satisfy the boundedness and smoothness conditions of Scction 2.
In fact €, 7(x) is given by

~ 7‘ S T o ~
& rlx) -”-\"*‘J‘ Xolr, &a(x)) dr + ( X,(r, &, 7(x)) dw. (3.1)

vie

Clearly &,,{x) is a backward {F..} semimartingale, with the time
parameter ¢ running from 7 to 0. The situation is the mirror image to that
discussed in Sections 2 and 3, so there exists a map

&[0, TIx [0. TIx RIx Q2 — R,
such that for t<r<T aﬂnd XeR? g",. #(x) is the essentially unique solution
of (3.1). Furthermore, & is twice differentiable in x; we shall write

0S,r

D, rfor Pt

For a given terminal condition x, consider the backward solution & ,(x+)
and the quantity ¢(&, +(x r)), where ¢ is a bounded, C* function on R, with
bounded derivatives. We now consider the backward martingale

1‘:1: = E[c(éo.ﬂ-\'r))‘ ],
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By the Markov property this is equal to

E[c(€or(x)Ix],  where x=&, ,(x7)
= E[e(§o,(x))1x]
=V, x), say.

Becausc of the symmetrical nature of both the Markov property and the
independence of Brownian increments, the analog of the argument in
Section 2 for the forward flow applies to J(t, x) and shows that

~

14 .
m (1, x)=LV(t, x).

(Note that because time is now considered in a negative direction we
consider ¢(& 4 4(¥)) = ¢(&,, (x)) and so we obtain 8¥/d1, rather than the
—8V/ot of Theorem 2.1.)
_The initial condition for ¥ is (0, & 1(x7)) = (o r(x1)), e,
P(0, xo) = ¢(xo).

This discussion avoids the “forward equation” for the “backward
process,” as used by Kunita [5].
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An ntegration by parts formula_for functions-of jump process is established which follows from an
ordinary integration by parts in the- state space of the jump- measure. The analog of the Malliavin
matrix is defined; if the inverse of this matrix belongs to all L#(),p 2 1, the jump process has a smooth
density.

KEY WORDS: Malliavin calculus, jump processes, integration by parts, stochastic flows.

0. INTRODUCTION

The Malliavin calculus is a calculus of -variations in function space. One of its
principal applications is to establish the existence and smoothness of densities of
processes defined by stochastic differential equations. Following the original work
by Malliavin [10], Bismut [4), Stroock [14], and others, on continuous stochastic
differential equations driven by Brownian motion, there have been papers on the
: Malliavin calculus for equations driven by jump processes. See, for example, the
work of Bismut [5], Bichteler and Jacod [2], Bichteler, Gravereaux and Jacod [3].
: Leandre [9], Bass and Cranston [1] and the recent paper by Norris [13]. A
central result in these papers is an integration-by-parts formula in function space
which is often established by considering a perturbation of the original process
and a Girsanov change of measure. However, we show below how an integration-
by-parts formula can simply be obtained from classical integration by parts in the
state space of -the jump measure. An analogous integration-by-parts formula for
continuous diffusions is established in [6]; however, the jump processes discussed
in this paper require significantly different definitions and techniques. A Malliavin
matrix M is introduced and if M~! belongs to all the spaces L% p21, then the
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jump process has a smooth density. Of course the crucial problem then concerns
the integrability of M ™!; this is investigated in [3] and [5] by imposing growth
conditions on the coefficients and using delicate Tauberian theorems. However, we
do not discuss such problems in this paper.

I. ASSUMPTIONS AND DYNAMICS

Consider a probability space (Q, F.P). Suppose u=pu(w,dtxdz) is a Poisson
random measure on [0,7]xZ and let {F,},0St<T be the right continuous
complete filtration generated by p. Here Z can be an open unbounded subject of
R™ in fact for simplicity we shall assume Z=R"™ G(dz)=dz will denote Lebesgue
measure on Z. We shall suppose the compensator v=v(dt x dz) of u is of the form
dtx Gdz)=dt xdz, so that the compensated measure g of u is
lde x dzy=p(de x dz)—dt x dz.

Dynamics 1.1

Consider a jump process &y (Xo) € RY, for 0t ST, given by

So.dXo) =X +I I 8(So.,-(x0), 2)fi(dr x d2)
07z

+

D ey =

j (&g, (xo), 2)¥(dr x d=) +_f Ao, - (xoh) dr. (L.1)
z 0

Here

g=(g" 1 Ligd, maps R*x Z—R*
h=(h), 1 £id. maps R*x Z~R*

A=(A"), 1 Ligd, maps R~ R,

We shall assume g, h, and A are C* and have bounded derivatives in x and z of
all orders, Furthermore, we suppose

- and

DEDih(x.) € L'Y(Z) n LHZ) n L*(Z)

sup
X

IR T A S T
o N
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for p2 1, and that

infdet |/ +g,(x.2)] >0, (1.2)

Then from the results of Meyer [11] and Léandre (8] there exists a map
G Qx[0,T)x RI—+R?

such that

i) for cach xe& R! ¢{w, 1, x) is the unique solution of (1.1).

i) for each w and ¢ the map ¢(w,1,") is C* on RY, with derivatives of all orders
which satisfy the stochastic equations obtained from (1.1) by formal
differentiation.

Consequently, for example,

satisfies

ch ¢

¢ A
Dy, = (% Do, dji + Fé Do,r-dv++ 5 Do, (1.3)

3
with Dy o=1, the d x d identity matrix.
The following result is similar to that of Léandre [8).

Lemma L2 Suppose V is the matrix solution of the stochastic equation

L og ¢ oh
Vo, =1=V{ Vs ,- =di—~[1{V b o dy
0.1 (,‘;;“ O.r ¢ R (_[2( 0. Y

! 04 ! og g\~ /@
"{Vo.rE'C—“d"*'{i‘/o.r-(éz)("*‘é—i) dp, (1.4)

Then V,,=D; ! for 0St<T

g

{

it
Uall

Proof ~ An application of the product rule shows that d(V, D, ) =0, so because
Vo.0Do.0 =1 the result follows.

Remarks 1.3 First note that if D, W,, are solutions of (1.3) and (1.4) with
D, =1=V,,, then by applying Jensen's, Burkholder’s and Gronwall's incqualities
we can see that

V.

D, Jand sup |V, farein LAQ) for all p< .

sSust

sup
ssust

S, u
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The Poisson random measure p is a special case of an integer valued random
measure. Therefore, as in (3.18) of Jacod [7], there is a set

D={{w.):plw{t}xZ2y=1}cQx[0,T)

and for each (w.r)e D a unique peint f(w)e Z such that u(w, {t} x dz) is the Dirac
measure at ff{w). Therefore,

(o dtxdz)= Y Oy puonldt x dz).
{w.5)D

Consider the solution flow @{w,t,x5)=2p (xo) Of (L.1). If 4, and so ¢, has a
" jump at time ¢, the magnitude of the jump of § is g(&q.,-(xo),2), wWhere == f,(w).
Write x=&;.,-(xo). Then by the uniqueness of the solution of (1.1) we have the
following flow and semigroup properties:
So.1{x0) =&, 1{x) =&, (0. d%o))
=¢, dAx+glx,2)p)
Considering the Jacobians, therefore, by differentiating and using the chain rule we

see So, (Xo) = So,i-(Xg) +£(E0,c - (o). 2 p, SO

] Do. .= +gdSo,,-(x0). ) p) Dy -
and

Dg.i =Dgi-(I =1 +8(0.1-(x0)2)) ™ 'gx(&o.c-(Xo) 2) (1.5)
i AISO. With D‘—'T=(-=lf“-.rlpx‘
Do, r=D,- 1Dy~

=D, (I +g,p)Dy,,-
)

Dy.7=Do.rDg - (1 +8.p) "
=Do.1Dg1-(1=(1+82) " '&l p)-

7 This identity indicates why condition (1.2) is necessary. Similarly, writing

| y=3o.dxo)

So.1lxe)=¢, H{y)
50

gﬁﬁ%fﬁ%’#_rzﬂﬁ%- . > oy F ey e s T RIEEENT e T T

I m Lt v}'l’f{‘f&_‘@\ﬁa‘é&”%ﬁ#“ﬁ"*” 7Ny R
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Do.T:D:.TDo.:
and
D,r=Dgy rDs.i. (1.6)

If we consider the Eq. (1.1) for & (xe) and the equation (1.3) for its Jacobian
Dy, as a single system, the cocfficients are not bounded. Foilowing Norris [12] we
introduce a class of “lower triangular™ coefficients. See also Stroock, [15].
Derinrrion 1.4 For positive integers %, d. d,....,d,. with d=d,+ - +d, write

Sdye....dy) for the set of X e C(R*x Z, R of the form
Xt 2) x!
X(x.2)= :X(Z,(Xl"\lz’ ) for x= o
:\’“’(.\". x3..xk o) Xt

zeR™ where RY is identified with R x -+ x R, x’e R* and the X satisfy

! DIDIX(x,z .
i Xllss ., =sup  sup ‘-*D ii;)lv sup |D;XUx,2)|e INZ) n LX(Z)

cere 0speagy (LX) 1$jsk

for all positive integers N.

Write S(d,.....d) =), S,d,..... dy).

For coefficients not involving = a similar space S(d,,....d,) can be defined as
in [6].

Remarks 1.5 Note (1.1) and (1.3) can be considered as a single system with the
coefficients  which involve z belonging to S${d.d?) and the coeflicients A,
(fA/¢E)D,which are independent of z, belonging to $(d,d?). The proof of Norris
can then be adapted to prove the following result:

Tucorem 1.6 Suppose g. i, Sd,.....d). A€S,(d,,....dy) and inf, det|l +g,|>0.
Then there is a mup ¢:Q % [0, 7] x [0, T] x R*~R? such that
i) for 0SsZ1£T and xe RY ¢(w,s.1,x) is the essentially unique solution of the
equation
dx,=gdji+hdv+Adi (1.7
with x,=x.
ii) for each w,s.t the map ¢(w,s,1,-) is C* in x with derivatives of all orders

satisfying equations derived from (1.7) by formal differentiation.
i) sup;sg E[SUP, sus [P Pl s, 1. X))

SCpst R Nd,... .. dy. . flellsea. o0 Willsia. 30l Allsta. )

.

where D" denotes any mixed partial operator in &/7x,,...,¢/¢xy of order less
than n.
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Proof This is a technical result whose proof, using sinooth truncations of the
coefficients, following that of Norris [12]. It is of interest to note that condition
(L.2)

infdet|l+g,>0
X

for the system (1.7) implies the corresponding condition for the enlarged system:
dy,=gdii+hdv+ Adt

G oh Y ,
dDO.1=5‘éDO.td#+E}3DO.rdv'*"ggTDO.tdt' {1.8)

The function corresponding to g, that is the coefficient of f, in (1.8) is

8§

2
“eD
&

-1
]

and the state space now consists of the variables x and Dy, Recall dg/d¢ is
another notation for g, the gradient of g, so

= (so0)
£= \e.@D

Forming the Jacobian of § with respect to x and D we obtain an operator we can

- formally denote by
8 0
£D®D g,

~ and, working in coordinates. we see det|]l+g,|=(det]l +g.}*). Therefore,
- inf det|l +§|>0.

2. INTEGRATION BY PARTS
= In this section we shall establish an integration by parts formula.
) Asstmprions 2.1 Suppose g, b AeS(d,,....dy),
lim Dig=C for g=1. (2.1)

faf=«

= x,&RY and that conditions (1.2) are satisfied. Consider the unique solution &g (X,)

 of the aanatinn
o Ihe eyualion

f So.lXp)=Xq+ }. ,‘.8(‘:0.'*(-"0)- 2)idr x dz)
({4

[ [ Mo, - (o 2)v{dr x d2) + § Ao~ (xo dr (22)
0z (1]

ferOStT

N ——— femmo . =
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Suppose F:[0,T]1x R‘—R is a bounded C? function. Ther the differentiation
rule gives

t ‘-

F
F(1.8y dxo) = F(0. Xq) +I«« (r. o (x0)) dr

+

o-_-,,.

[

(I‘ So.r- \0))g(§0.r‘('\.0)‘:)dﬂ

(c'
{ F . .
+[f 7z (r o, XD o, - (X)) dv
oz CS
LOF .
+ [ 2 (n &, - (XoD AlEq.,-xo)) dr

o (%
+(_[ I(F(r' 50. r'(x()) +g(;—0.r‘(x0)v :)) - F(I". C'o.r-(-\'o)
Z
= g 7 So.r - (XoD8( o, - (xo) 2) dpt

iF

Y
G

hdv

[ o
ol S

F(0. wo)+j(-F A)dr+:j;£

oy,

+I J(F(" So.r-(x0) +8(So,,-(x0), 2) = F(r™. &, (xoh dji

4

O ey

JUF(r &0, (xg) +8(E,, (Xo) D) = Flr &g ,-(xo))
FA
= 557 o (xoe(Co.r- (o) ) dv. (2.3)

Consider a bounded €' function (:R‘—R with a bounded derivative Cy
fhe random variable ¢(Cy 1{x,)) is F; measurable and for 0<l<7 we can
consider the martingale

M= E["(s;o. {Xo)) ‘ FJ

Writing x =&, (x,), because tne process & is a Markov, we have
0.Xg p
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=E[e(&,,1(x)]

=V(t,x), say.

By differentiating with respect to x inside the expectation we see

oV &, r
=FE| cdé X)) ~—
‘:\,X I:cs(Sl. T( “)) (-}x

=E[cd&o.H{xo) Do.7| F1 D}
using ( 1.6).

Lemsa 2.2 V(1. x) is differentiable in t,

Proof Consider the function ¢(x)=c(¢, #{x)). Using (2.3):.

L8 ! g
GG XN =(x)= | A(—(bdr-i- ] fh(@(fdv
K

5= —_—
t- X t~hZ

]

t-h

JBE, () + 8o (XD 2} =BG - () dit
Z
1=hZ

+ J‘ I((p(él—h.r '(-‘:)'*'g(‘;-l-h.r‘(x)s :))_(ﬁ(ér-h.r‘\x))

~ 0 9.2 S G (N

Taking the expected value, dividing by h and letting h—0 we see

&V lid 2N
- =As+|hd:
ét fx oy

/ ~\} 74 v} Y SRR Y -
V- xxglx o)) Vix)-glx, o) 1~ jdz
/\ X

Because the martingale V(:..\')=E[c(io,,(xo))[F,]=E{c(é,_r(x))] is differentiable
in 1 and x we have the following martingale representation result.

Prorosition 2.3 Write y=¢&, (xo). With V(t,y)= E[c(&, +(y)] = E[c(So.1(xo))| F.)

R AL o W VR

S A IR R ST e T e S S ST
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V{1, &gl x0)) = V{0, xp)

+[ [ (W&o, (xo)+8(Ep,-(Xo) 2) = V(r ™ &o,-(xo))) dit
z

£ Sy =

Proof  We have seen above that V is differentiable in ¢ and y. Therefore, writing

down the differentiation rule (2.3) for V

Loy v tooav
Vit.éq (. = X - ey / -Td'
(1. <o (2 o)) = V(0 \°)+£(8r + A4 l?g)dr+(j;j; 1&; v

+ [ [ (V(r.&o..-(xo) +8(So.. - (Xo) 2) = V(r ™, ., (X)) dji
A

+ [ [ (V(r.éo - (x0) + 8(&o.r-(Xo0)r 2))
02z

av i
- V(I'- . g—().r “'\.O)) —g(éo.r‘(xo)\ :) F‘E (I'_. §0.r ‘(xo)) dv

%
= V(0. xo) +]| (-7 + LV) dr

0\ 06

+ ) (V{r.So.,-(x0) +8(Eo,,-(x0) 2) = V(r~.¢o.,-(xo)) dji.

& Cmmy =~
N Sy

However, from Lemma 2.2 éV/ér+ LV =0 and so
!
V(L 3) = V(0. X0) + [ [(V(r.So.,-(x0) +8(Eo.r-(X0), 2)) = V(r™ o, - (Xo)) dii.
04

The integral with respect to the compensated measure f 1s, of course, a martingale.

CoroLLary 2.5 Note, in particular, the representation

T
e(o. 1xo)) = ELcléo, fxoD + § f(V(r &o.,-(x0) +8(E0, ,-(X0): 2)
0z

= V(r~. o, -(xo)) dii.
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Noration 2.6 Suppose Alw.t,z)=4(t,z) is a square integrable, predictable, pos-

sibly vector-valued, process such that both (. z) and

v g ae -
Iz, :)=:;f=((¥/~' M—) belong to LY(Z x[0, T] x Q)

¢z, ¢z

and lim 4(1,2) =0, for almost all w. (2.6)

[HEA

Consider the vector valued martingale

C A . ¢ /A a5
=H<§:}‘-f~_i)d;z—”(¥—,—c;—)d» (2.7)
YACCTIE é:

For t£ksm

a1

G
- s=-dzyodzy, . dzy, | dr=0
7 Cox o\z0%

for almost all @ by (2.6).
Therefore, L, = {{ |, i(r.z) du for almost all w.

- TutoreM 2.7 Suppose &g (Xo) is the solution of Eq. (2.2) and L, is defined by (2.7).
Write x=£&g,-(xo). Then

E["(s:o. 1(xo)) L]

T
-E [Q(«fo. XD Do [ [ D -1 +£,x.2)) " *gulx. 2)alr (s, dr)]
027

where

Prgof  With V" given as in Proposition 2.3 and L given by (2.7) the product rule
implies that

T T
VI'LT::I V,- dL+IL,- dV
0 0

.
+ [Vr x+glx.2) = V(rm x)i{r.2) dp.
0/
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Taking expectations we have

T

E[<-<fo.,<.\-on1.rl=1[§ [ Virx+gix )mr.:)dv]

Aalede) o

and the final expectation is zero by (2.6). Furthermore, because [(r,z)=
(@Afézy.....8A[3z,) we can integrate the terms by parts in z,,...,z,, respectively,
and obtain:

T
E [I (I Vr.x+ gl 2)(r. ) d:) dr:l
0\2

rox+g(x, ) A(r,2) dz dr].

"\.J' ~
) i ~.

]
i
o]
Sty =
N
RS
<
—

o

-

T (}V .
==k ” = (r.x+glx.2))ilr,z d/l] [jj~~ (r,y)g /.(r,:)d,u]
[ 07z ¢
where  y=¢, (xo). (29
Here we have again used (2.6), and ¢V/dz=(0V/izy,....dV/¢z,,). Recall

V(t.y) = E[c(Eo. dxo)) | F.1= ELcE A

and from (2.4)

eV . _
E}‘ = E[Q(Qo.ﬁxo»bo.ri F:JDO,:,

T
[]’ (j' V(r, x +g(x, 2))(r. -)d.)dr}
0

T
- E [J‘ I E[C;(éo.r(xo) DO. Tl F,]D(;':g:(.\', :)}'(r» :) dﬂ:|
0z

SO

Writing
X, =E[cdEo. XN Do, 1| F.]
and

e e =
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Y, =[ [ Dg; g:(x-02)Als, 2) d
07

we have

T T

XoYr=[X,dY,+[ V. dX,
0 0

SO
.
E{XTYT]=E[_[ X,dY,].
[¢]

Substituting in (2.9},
Eft‘(\.:o, r(-fo))Lr]

T

= - El:c;(éo.ﬁxo;)Do_Tj { Do} gAx. D) Alr ) p(dz, dr):l
02
T

=— E[C.-ls’o. Hxo) Do, rf [ Dgs-(1+gx.2)) ™ g(x. 2)Alr, :m(d:,dr)].
0z

NoTATION 2.8 Write
M =D, 1 +g) 7 'g(x. )gH(x.2) (] +8,)* ™ ' D2 dz. dr)
sZ

where, as above, x=¢&;,-(xo) and * denotes the transpose. Then M is the
Malliavin matrix for the process.
CoroLtary 2.9 In Theorem 2.7 take A(t,2) to be the process

grl+g)*'Dg;

Note that from (2.1) this £ satisfies condition (2.6). Then with /{t.2) =(¢4/¢:){1.2)
and Lp=[§{,.2)dp

Elcléo.Axo)Lr]) = E[",-(fo. Hxo)Do.rMo. 1) (2.10)

Remarl 70 Equation (210) can be considered 2s an “inte

formula for (S, r{xo)).

in Theorem 2.7 we could consider an | which is just the derivative of 4 in a
single direction, say [(1,z)=¢4/¢z,. Then with L=, {,/(t,z)dji for this component
the above calculations go through, and we obtain (2.9) with M, r replaced by

J{Dos.U+g) g8 +8)* ' D 7 pldz,dr).

0z
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Here g., =38g/¢z,. An integration-by-parts formula (2.10) is obtained which
involves the derivative of g in just a single direction. However, to preserve
symmetry, we prefer formula (2.10) in the form vhich includes the gradient g..

3. HIGHER DIMENSIONAL FLOWS AND BOUNDS FOR DERIVATIVES

Consider a product function

S (o, Axo)) =c(Eo, HXo)) k(o 1{x0))

satisfying the conditions of Theorem 2.7 and apply Corollary 2.9. Then

E[f(éo, Hx)) )= - E[(Q(fo. xo))k(Eo. 1{X0) + (5, 1{-‘50))1\’,-(50. 1(Xo)) Do, 7 Mo, )

What we would like to do in (3.1) is take k=Mg tD3 % so we can obtain a bound
for ¢, However. Dt and Mg § involve the past of the processes £, D and M. This
difficulty can be overcome, as in {6], by considcring augmented flows ¢,
n=1.2,..., defined inductively in higher dimensional spaces. Therefore 1.6 applies
to all ¢". n21, so that analogs of Theorem 2.7 and Corollary 2.9 may be used
with ¢! instead of ¢ and k(¢''\= Mg }Dg.} to prove the following result:

Tuieorem 3.1 Suppose o (xo) is the solution of (2.1) and ¢ is any smooth function
with bounded derivatives. If Mg % is in some L¥(Q)

[ELegGo. #xoD S K sup Je(x)].

xe R4
Remarks 3.2 As is well known (see Malliavin {10], or Stroock [13]) the
incquality (3.4) implies the random variable &, {x,) has a density.

To show the density of &, r{x,) is differentiable we must obtain bounds of the
form

S K sup [c(x)] (3.1

xeR4

ls[é‘ié;c(c’o. r(Xo))]

where a={(x,.%,,...,2,) is a multi-index of non-negative integers and

An argument from Fourier analysis (see [12]) shows that if (3.1) is true for all «
with [o|=a, 4+~ +a,<n where n=d+1 then the raadom variable ¢y r{xo) has a
density d(x)=d(x,,...,x,) which is in C""4~Y(R’).
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If we proceed as above with ¢ replacing ¢'"' and consider successively higher
derivatives of ¢ in the above mentioned analog of Corollary 2.9, we can derive the
following result:

Tugorem 3.3 Suppose the inverse of the Malliavin matrix, Mg ¥, is in every LP(Q),
1E£p< %, Then the random variable o ({xo) has a density d(x) which belongs to
C*(R).

Remarks 3.4 The above has been studied in detail in [6] for the continuous
case, and the methods carry over to the situation here. The main question,
however, concerns the existence and integrability properties of Mg 4. Now
M 'elLnQ) if and only if detM~'eL/(Q), and for the symmetric matrix M we
have the following inequality, (see [3]):

(det M) T(p) ¢ | |x}**™ Yexp (= x*Mx)dx.
Rd

To show the integral on the right is finite delicate Tauberian theorems are applied
in [5] and [3]. The conditions for these to be satisfied are established by assuming
g satisfies certain growth conditions. The objective of this paper is to give the
simple proof of the integration-by-parts formula (2.10), which does not involve the
calculus of variations in function space, and indicate how this simplifies arguments
concerning the existence of densities.
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Martingale Representation and the Malliavin Calculus*
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\ Abstract. Using stochastic flows and the It6 differentiation rule, the inte-
grand in the representation of a martingale as a stochastic integral is identified.
. By iterating this representation result a homogeneous chaos type expansion
is obtained. Using the stochastic integral representation, an integration by
parts formula is obtained without using any calculus of variations in functicn

space. If the inverse of the Malliavin matrix belongs to all spaces L”(Q) it
follows that a random variable has a smooth density.

. 1. Introduction

The Malliavin calculus was originally developed in a remarkable paper, [7], as

. a caleulus of variations in function space; one of its applications is to show that
under appropriate conditions diffusion processes have densities. Bismut, in (3],
approached the Malliavin calculus by using stochastic flows to describe perturba-
tions of trajectories while Stroock in, for example, [9] used more functional
analytic methods. Simplifications of the Malliavin theory were provided in the
papers by Bichteler and Fonken [2] and Norris [8], and in the recent book by
Bell [1]. A very readable exposition can be found in the paper by Zakai {10],
and a careful treatment is in the text by Ikeda and Watanabe [5]. In all these

presentations function space calculus is used. A contribution of this paper is that,
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106 R. J. Etliott and M. Kohlmann

for Markov diffusions, some of the initial results of the Malliavin theory, including
the “integration by parts” formula, are obtained by techniques which involve
differentiation with respect to initial conditions.

The paper begins by using the theory of stochastic flows to identify the
integrand in a stochastic integral. After some rearrangement this integrand is
itself written in terms of a martingale which can be expressed as a stochastic
integral, and by recursively repeating the representation a homogeneous chaos
expansion is obtained. Using the stochastic integral representation, an integration
by parts formula is then derived. If the inverse of the Mailiavin matrix M belongs
to all the spaces LP({)) we show that a random variable has a smooth density;
hawever, the difficult questions concerning the relationship between Hérmander’s
conditions on the coefficient vector fields and the integrability of M~ are not
discussed in this paper. This paper was presented at the Workshop on Diffusion
Approximations held at the International Institute for Applied Systems Analysis,
Laxenburg, Austria, in-July 1987. A fuller treatment of the ideas given here can
be found in [4].

2. Dynamics

Consider a stochastic differential system
dx, = Xo(1, x,) dt+ X;(1, x,) dw'. (2.1)

Her: xe R 0=¢=T, and w=(w',...,w™) is an m-dimensional Brownian
motion on (Q, F, P). We shall assume that the coefficient vector fields X are
smooth and have bounded derivatives of all orders.

From results in [5], for example, it is known that for0<s=t=T and x,€ R¢
there is a unique solution & ,(x,) of (2.1) with & ,(x,) = x,. Furthermore, there is
a version of this solution which, almost surely, is smooth in x, € R*.

If xoe R and x = & (x,), because the solutions of (2.1) are unique,

&,1(x0) = &,7(&.4(x0)) = &, 1(x). (2.2)

Write D, =3¢, ,/ox for the Jacobian of the map x - & ,(x). Then, differentiating
(2:2),

Do r= D-.TDO,: .
Again, from [5] we know that D satisfies the cquation
38X 0X, ;
st,, =—6?0 Ds', dr +—c;§' DS‘, dw; (2.3)

with D, = I, the d x d identity matrix.
Consider the matrix function V,, defined by the stochastic differential
equation

"o

2% axXi ,
dv,,=- Vs,r _azq dt—V,, E dw; (2.4)
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with V= I Here

- 1 om an
Xi=X)-- (———"—) o
0= X073 2 \Ga
Then, see [2], d(V, D;,)=0so
Vs.l = D:: .

3. Martingale Representation

Suppose xo€ R* is given. Consider a smooth, bounded function ¢ on R and
the random variable c¢(&, 1(xo)). Write {F,} for the right continuous, complete
filtration generated by F,=o{w,:s=t}. Because x, is known o{x,:s=t}c F,
and the process (x,, w,) is Markov. Consider the martingale

M, = E[¢(§o,7‘(-"o))lﬁ]-

Then by the martingale representation result

t

M, = M0+J 7.(5) dw! 3.1
(4]

&

for some predictable, square integrable process y. However, because & ,(x,) is
Markov, writing x = & ,(xo),

M, = E[c(é,r(x0))Ix]= E[c(§,7(x))]= E[c(&r(x))|F]= V{1, x).

By the chain rule c(¢,r(x)) is differentiable in x. Consequently, V(t,x) is
differentiable in x. By considering the backward equation for & r(x) as in [6] we
see V(1, x) is differentiable in t. Therefore, applying the 1td differentiation rule
to V(1, x) with x =& (o),

t

V(1 &.(x0)) = V(0, xo) + J

[4]

v 3V
(§—+Lv) ds+J 3. X dw'. (3.2)
o8 9x

1]
Here

d .3 1 d m i) 82
L= Xo—+~ X X .
.21 Yax; 2 .,,231 (k§I * k) 9X; 9%

However, V(1, & ,(xs)) =M, so the decompositions (3.1) and (3.2) must be the
same. The bounded variation term in (3.2) is, therefore, zero, i.e.,
Vv
S Lv=0
as

and (as is well known) V is the solution of ihe backward Kolmogorov equation

with a final condition

c(xr) = V(T, x7).
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Equating \i.¢ martingale terms in (3.1) and (3.2)
A%
¥i(t) =ox Xi.

Differentiating inside the expectation

%l-; Elc(&1(x))D,7|F]  (by the chain rule)

= E[c;(&,1(x0)) Do, 7| F.)Dg;.
So
yi(1) = E[ce(&.7(x0)) Do, 7l F.1 D5 Xi (3.3)

and

M, = E[c(& 7(x0))]+ Jo E[Cg(fo.r(xo))Do.TlR]D&;Xa(S, b.s(x0)) dwy. (3.4)

Remark 3.1. Note the term E[ce(&.7(x0)) Do vl F.] is itself a martingale. If the
representation is written down at (=T

My = C(§o.'r(-\’o))
7

=E[C(§o,'r(xo))]+J E[C_e(\fo.r(-"o))Do,'r‘Fs]D(?,lxx' dws. (3.5)

0

Also, the representation (3.4) holds for vector (or matrix) functions c.

If we take c(£)= ¢ to be the identity map on R, (3.5) gives

1
&o.7(x0) = E[&,1{x0)] + L E[ Do r{F;1Dg s X; dwy.

Also, if we consider (3.5) for a second smooth bounded function g and take the
expected value of the product of each side, we see

E[c(&.r(x0)) g (& r(xo))]
= E[c(&,7(x0))1ELg(&,1(x0))]
m (T
+ E[ z J ElceDo | F1D5 X X FDY;  E[ 8Dy v| F,)* ds]. (3.6)
=1 JO
Definition 3.2. The Malliavin matrix for the system (2.1) is

1]
M, =Y ([ DX (1) X (u)D¥;! du).

=1 N,

Note something resembling M, , occurs in (3.6).
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4. Homogeneous Chaos Expansions

Consider an enlarged system with components £ =(¢ D). The stochastic
differential equation for ¢ is, therefore, the system (2.1) and (2:3). The
coefficie: ts in (2.3) are no longer bounded, but following Norris [8] a sequence
of “triangular’ systems can be considered and the results on stochastic flows still
hold. We can, therefore, consider the Jacobian D' of the system £ and a
system &2 = (£ D), Proceeding in this way £ is a system with components
(&1, D=1y, Write

1P AT 0 e T b6 et gy

+
‘, .

Equation (3.4) can then be written

T

c(&r(x)) = E[C(§O,T(xo))]+J. E[¢"|F,]Dg X dwi. (4.1)

o

However, E[c'"(£0})|F,} can be represented, as in Section 3, as a stochastic
integral

E[cV|F]=E["]+ J E[c¢®|F, DG X[ (51) dw,.
4]

Here, X{" is the coefficient vector field of w’ in the system defining £
Substituting in (4.1)

[
By

ity

r
¢(4o.r(x0)) = E[c]+ E[c"] J D5 X, dw
0

a

T s
H +J (J E[c‘”m,]uf,f,);'x}“(s,)dwl;,) D;iX;dw. (4.2)

0 [

P il

Now E[c'?|F, ] can be expressed as a stochastic integral and the result substituted
in_(4.2). Proceeding in this way we obtain the homogeneous chaos expansion of
the random variable ¢(&, +(x,)). The repeated stochastic integrals do not involve
¢ but only the Jacobians D® and coefficients X .

5. Integration by Parts

Lemma 5.1. Suppose u=(u,,...,u,) is a square integrable predictable process.
Then

r (f 1 moT (T 1
E[C(fo.r(xo)) J u; dW.':J =Y E '_Ce(‘fo.T(xo))Do.TJ D Xi(s)ui(s) dSJ-
0 i=1 0
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Proof. Consider the representation (3.5) for ¢(&,r(xo)). Multiply by [§ u dw!
and, using Fubini’s theorem, take the expectation. 0

Corollary 5.2. Take u,(s) = (D Xi(s))*. Then

T
E[C(fo,r(-\'o)) L (D&:Xi(s))* dwi] = E[Cg(fo,r(xo))DO,TMo.T]- (5.1

Remark 5.3. Consider a product function h(& (X)) = c{ & r(x0))g( &, 7(x0)) and
apply Corollary 5.2 to h. Then

T
E[("g)(fo,r(xo)) L (D(—)-.iXt)* dwi] = E[(ng'*‘ ng)Do.TMo.T]- (5.2)

We would like to take g = Mg »-Dg} in (5.2) so that we can obtain a bound for
¢ This can bz done by considering, again following Norris [8], a hierarchy of
stochastic systems similar to, but different from, those introduced in Section 4.

This time write 0 @(w, s, t, x)=¢£,(x) for the flow defined by (2.1) and
D®(x)= D, (x) for its Jacobian. R\ =[{(D;LX,(u))* dwi, and M =M,, is
the Malliavin matrix defined in (3.2). Note that M,, can be considered as the
predictable quadratic variation of the tensor product of R? with its adjoint, that
is MO =(RO®R"),,.

Now consider an enlarged system @'Y with components
(p”’=(<p‘°’, D(O), R(O), M(O)).
The results of Norris [8] on stochastic flows allow us to discuss the Jacobian
D of ¢V, Assume X" is the coefficient of w' in the system describing ¢",
and write
1
R)= J (DL X (w))* dw,
s
M-("ll) - (R(l)® R(O)'>s"-
Then define
(p(z)z(‘pm, D(l), R“), M(l))

and inductively, o!"*V=(o'™, D', R M™). Write V, for the gradient
operator in the components of ¢’ The following result is established like
equation (5.2) by considering the martingale representation (3.5) of the produce
cg.

Theorem 5.4. Suppose c is a bounded C® scalar function on R* with bounded
derivatives. Let g be a C* possibly vector, or matrix, valued function on the state
space of ¢ such that g(¢"™(0, T, x,)) and V,g(¢"0, T, x,)) are both in some
L7(Q). Then
E[c(¢(0, T))g(¢'™(0, T))® RG:
= EN(Vec)(o'(0, Tgls ™8, T))Dorior]

Lk

+ E[c(¢(0, T))(V,.8)(e™(0, T)) DSFMEH. (5.3)
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Corollary 5.5. Gronwall’s inequality shows that D™ is in all the L*(Q) spaces,
so if My is in some L? () taking g(¢'"(0, T)) = M5 yDyr in (5.3)
E[ce(4o.7(%o))] = E[c(&o.(%0)) M5 r D5+ ® Ry 7]
— E[c(&,7(x0))(V18)(Do,r, Mor) DET MUY,

Because ¢ is bounded we, therefore, have the following result:

Theorem 5.6. Suppose & r(xo) is the solution of (2.1) and c is any smooth bounded
function with bounded derivatives. Then if Mgy is in some L?(Q)

[E{cg(bor(x)]|=K Sup fe(x)l. (5.4)

Remark 5.7. It is well known that (5.4) implies that the random variable £, (x,)
has a density d(x). To show the density d is smooth we wish to establish
inequalities of the form

[ ~ (&.7(x0) )] I =K sup Je(x)). (5.5)

9" @ 4™ ™

An argument from Fourier analysis (see [8]) shows that if (5.5) is true for all «
with |aj=a,+- - -+ a,=<n where n=d+1, then the random variable & r(xp)
has a density d(x) which is in C"""'(RY).

Apply Corollary 5.5 to ¢, rather than ¢ so
E[cee(o.7(x0))]= E[c(&. T(-\’o))l\’!-l D"l ® Ry 7]
- E[Cg(fo (X)) (V1 8)(Do,r, M, T)Dm (1) . (5.6)

Consider the two terms on the right of (5.6) and write M = M, +, D = D, r, etc.
Let

g(eM)=M"'D'®@RM™'D™
and
ge®) =(V.g)(D, M)DVM "M ™' D"
Applying Theorem 5.4 to cg, and cg,,
E[c(&.r(x0))gi(¢")®R]) = E[Cc(fo,r(xo))M-'D—’(’@R]
+ E[e(40.7(%0))(V28,) () DP M ] (5.7
and
Elc(ér(xNg: (oY@ R = {cg{ & %)% 18)( D, MDY M)
[C(fo,'r(xo))(ngz)(‘Pm)D(s)Mm]- (5.8)
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Using (5.7) and (5.8) the terms on the right of (5.6) can be replaced by terms
involving ¢. This procedure can be iterated using Theorem 5.4 and the following
result established:

Theorem 5.8. Suppose M~ is in all spaces L*(Q), 1< p <. Then the random
variable & 1(xo) has a smooth density.

The remaining questions concern the existence and integrability properties
of Mg These have been carefully studied (see [5] or [8], for example). In fact
Mgk is in L7(Q) for all p, 1=p <c0, if the following condition of Hérmander
is satisfied:

Condition 5.9. The vector space V(x;) generated by the coefficient vector fields
Xiy.--, X, and the brackets [ X, X;], 0=si,j=m,[X,[X;, X;1),0=<ij k=m,
etc., evaluated at xo€ R, is the whole of R“.
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Summary

The adjoint process and minimum principle for a partially observed diffusion
can be obtained by differentiating the statement that a control u* is optimal. Using
stochastic flows the variation in the cost resulting from a change in an optimal control
can be computed explicitly. The technical difficulty is to justify the differentiation.

1. INTRODUCTION.

Using stochastic flows we calculate below the change in the cost due to a ‘strong’ variation
of an optimal control. Differentiating this quantity enables us to identify the adjoint, or co-
state variable, and give a partially observed minimum principle. If the drift coefficient is
differentiable in the control variable the related result of Bensoussan [2] follows from our
theorem. Full details will appear in [1]. The method appears simpler than that employed in

Haussman (4].
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2. DYNAMICAL EQUATIONS.

Suppose the state of a stochastic system is described by the equation

dfi = f(t1€t’u)dt + g(ta ft)dwi,
& ERY, &=z, O0ZtLT (2.1)

The control variable u will take values in a compact subset U of some Euclidean space R*.
We shall assume

Ay;: zo € R%is given.
As: f:[0,T]xR?xU — R is Borel measurable, continuous in u for each (¢, z), continuously

differentiable in z for each (¢,u) and

T+ =) 7A@z u)| + | fo (7, u)| € K.

As: ¢:[0,T] x R* = R?® R™ is a matrix valued function, Borel measurable, continuously

differentiable in z, and for some K>:

lo(t, 2)] + 192(¢, 2)] < Ko

The observation process is defined by

¥ € R™, vo=0 0<t<T

In (2.1) and (2.2) w = (w!,...,w") and v = (¥,...,v™) are independent Brownian
notions defined on a probability space (2, F, P).

Furthermore, we assume

Ay h: R - R™ is Borel measurable, continuously differentiable in z and
|h(2, )| + |h2 (2, 2)| < K.

REMARK 2.1. These hypotheses can be weakened to those discussed by Haussman [4].
See [1].
Write P for the Wiener measure on C([0,T],R") and p for the Wiener measure on
C([0,T],R™).
Q= C([0,T],R") x C([0,T},R™)




and the coordinate functions in §2 will be denoted (z¢,y:). Wiener measure P on § is
P(dz,dy) = P(dz)u(dy).

DEFNITION 2.2. Y = (Y} will be the right continuous, complete fltration on
C([0, T}, R™) generated by

Y)=o{y,:s <t}
The set of admissible control functions I will be the Y -predictable functions defined on
[0,7) x C([0, T}, R™) with values in U.

For u € U and © € RY, £¥,(z) will denote the strong solution of (2.1) corresponding to
u with £, = z.

Define , .
Z3(e) = exp ([ e @) dur = 5 [ WERe)Per). (23)

Note a version of Z defined for every trajectory y can be obtained by integrating the stochastic
integral in the exponential by parts.

If a new probability measure P* defined on 2 by putting

dPr
T Zg r(20),

under P* (3 ,(%0), ) is a solution of the system (2.1) and (2.2). That is, under P¥, &5 ,(zo)
remains a strong solution of (2.1) and there is an independent Brownian motion v such that

y¢ satisfies (2.2).

Because of hypothesis A4, for 0 < ¢ < T easy applications of Burkholder’s and Gronwall’s
inequalities show that

E((Zg,4(0))] < o0 (2:4)

forallue U andallp, 1 <p<oo.
COST 2.3. We shall suppose the cost is purely terminal and equals

c(éo,7(z0))
ed, differentiable function. If conirol u € U is used the expected cost is
J(u) = Eule(£g.7(20)))-

With respect to P, under which y, is a Brownian motion

J(u) = E[Zg,r(z0)e(é,(20))]- (2.5)




A control u* € U is optimal if
J(u*) £ J(v)

for all u € U. We shall suppose there is an optimal control u*.

3. FLOWS.

For u € U and = € R consider the strong solution

Ea(e) =2+ [ f(ry &, (2), ur)dr + / 9(r: &y r(2))dwr. (3.1)

We wish to consider the behaviour of £} ,(z) for each trajectory y of the observation process.

In fact the results of Bismut (3] and Kunita [6] extend and show the map
€nii RP— RY

is, almost surely, a diffeomorphism for each y € C([0,T], R™).
Write

l€*(zo)ll: = sup |5 ,(z0)l-
0<s<t

Then, using Gronwall’s and Jensen’s inequalities, for any p, 1 < p < o0

T %
el < C(1+laal +| [ atr&g (oo )

almost surely, for some constant C.

Using A; and Burkholder’s inequality

l€*(zo)llr € L? for 1<p<co.

Suppose u* is an optimal control, and write
2e() for €5().

The Jacobian %%‘ is the matrix solution C; of the equation

dCy = fo(t, €5 4(z),u")Cedt + ) | g (2, €7 ,())Crdus. (3.2)

1=1
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Here ¢(") is the i** column of ¢ and I is the n x n identity matrix. Writing ||Cllr =
SuPy<,<1 |Cs| and using Burkholder’s, Jensen’s and Gronwall's inequalities we see ||Cl| € L?,

1<p<oo.

Consider the matrix valued process D defined by

Di=1- / -Drfz(raﬁs r\ x) u )dr

i=1v?

- Z Dr.‘](‘)(r, E:,r(x))dwi + Zf Dr(gs:i)("" 6.:,r(x)))2dr (3.3)

Then as in [5] or [6] d(D:C})j =0 and D,C, = I so

=C = (?-gii) -

Furthermore, [|D]|; € L?, 1 <p < 0.

Suppose z; = zg + At + 21, [, : H;dw! is a d-dimensional semimartingale. Bismut [3]

shows one can consider the process ] ;(z:) and in fact:
t
le) =5+ [ (£ Gar)u)
3

+ 306 o) By

=1

=\ 0%¢; .
322 (Hi,Hi))d"

i=2

[t + 3 [ (600 + e

(3.4)
DEFINITION 3.1. Fors € [0,T]), h >0 suchthat 0 < s<s+h <T, forany @& € U, and
A €Y, consider a ‘strong’ variation u of u* defined by
u*(t,w) if(t,w)¢[s,s+h]xA
a(t,w) if(t,w) € [s,s+ h] x A.

-u(t, w) = j

THEOREM 3.2. For any strong variation u of u* consider the process

n=z+ / 5’ '(zr) " (e, &6r(2r) ur) = £(r 6 o(20), uz))dr. (3.5)
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Then the process &, ,(z:) is indistinguishable f;-om €3 ().

PROOF. We shall substitute in (3.4), (noting H; = 0 for all ¢). Therefore,

G =2+ [ 10,68 () ut)dr

# [ () (B ) " 00,85 o)) - S e,
+ /.. tg(r, €3 (2r))dw,.

The solution of (3.1) is unique, 50 £ ,(2t) = &} ,(2). Note uft) = u*(t) ift > s+hsoz = zsyn
ift>s+hand

f:,t(zt) = f:,t(zs+h)

= §:+h,t(£:,a+h(m))- (3.6)

4. THE EXPONENTIAL DENSITY.

Consider the (d + 1)-dimensional system
t b4
) =2t [ FE5ue) i + [ 90r,65,(e))do,
s s

t
Zie,2) = 5+ [ 23,0, () dy, (41)

That is, we are considering an augmented flow (¢,2) in R%t! in which Z* has a variable

initial condition z € R. Note:
Zix(z,2) = 225 (2).
The map (z,2) = (€] ;(2), Z; (2, 2)) is, almost surely, a diffeomorphism of R?+!. Clearly,
430 of
3. = 0, e 0 and —==0.
The Jacobian of this augmented map is represented by the matrix

8;‘. : 0

2, oz

C¢ = .
9zy, 9Z;,

az oz
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In particular, from (4.1), for 1 <i < d

8:;'-2 / (Zir(a z>26h Thos wifer, o) D). (42

We are interested in solutions of (4.1) and (4.2) only when 2 = 1, so as above we write

Z; (z) for Z7(z,1) etc

LEMMA 4.1. 5
Z:t 8 r
613 = Z.t(x) / h (63 t(x)) £ )

where, as in (2.2), dvy = dys — h(€; ,(z))dt.

PROOF. From (4.2)

073, 82;, , ..
m’=[( h@u@D+ZAﬂh@m@D€ =2 ) dy. (4.3)

Write

Boale) = 22,0 [ o St
Then .

Zie) =1+ [ 2L € Dy,

and the product rule gives
14
Lut) = [ Bonla)W (€5, (et

] o(@he - gy,

Consequently, L, «(z) is also a solution of (4.3), so by uniqueness

Z‘
Ladle) =5

LEMMA 4.2. If z, is as defined in (3,5)

7/

Z:,t(zt) = Z;‘,,(:c).

PROOF. t
Ze) =1+ [ 2L W) (44)




Applying (3.4) to Z; ,(2t) we see:

¢
Ziuer) = 1+ [ 23, (€, (2o

t
=1+ [ 2, GOR(E )i

by Theorem 3.2. However, (4.4) has a unique solution so

Zyulzr) = Zg ().
Again, note that fort > s+ h

Z:'t(z,) = Z:',(Z,.H,). (4.5)

5. THE ADJOINT PROCESS.

u* will be un optimal control and u a perturbation of u* as in Definition 3.1. Again write
z = {5 ,(0)-
The minimum cost is
J(u*) = E(Zg 7(z0)e(€5,7(20))]
= ElZq,4(20)Z;,7(z)e(€; 1(2)))-
Also,
J(u) = ElZ5 4(20)Z57(2)e €57 (2))]
= E[Z5 (%0)Z; 7(zs40)e(&5 7(Ze))]

by (3.6) and (4.5). Recall Z; p(-) and c(€; 7(-)) are d ferentiable almost surely, with contin-
uous and uniformly integrable derivatives. Consequently, writing

a -
I, 2) = Z(o0)Zirlan){eelEin(er)) i (s,)

+elEale)( [ e oe) 2o (e ) (Bize)”
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for s <r < s+ h, we have

J(u) = J(u*) = B[Z5 {(20){ 23 1(za4r)c(&] 1(2540)) — 23 p(2)e(€5 p(2))}]
s+h
=EL[ Do, 2e)(f(r, €5 (er)sur) = S, €5, (@) i) (5.1)

This formula describes the change in the expected cost arising from the perturbation u of
the optimal control. However, J(u) > J(u*) for all u € U so the right hand side of (5.1) is
non-negative for all » > 0. We wish to divide by h > 0 and let A — 0. This requires some
careful arguments using the uniform boundedness of the random variables and the monotone

class theorem. It can be shown that there is a set S C [0, T)] of zero Lebesgue measure such
thatif s ¢ S

E[T(s,z)(f(5,85,e(z0), u) = £(5,65,0(0) u3))a] 2 0 (5.2)
foranyu € U and 4 €Y,.

Details of this argument can be found in [1]. Define

o r
52 (&)

pu(z) = B [c¢(63 2(z0))

+elgi () [ e aan) 2 (o))

y;v{x}]

where z = £ ,(z0) and E* is the expectation under P* = P,

In (5.2) we have established the following:

THEOREM 5.1. p,(z) is the adjoint process for the partially observed optimal control prob-

lem. That is, if u* € U is optimal there is a set S C [0,T] of zero Lebesgue measure such
that for s ¢ S

E*[ps(z)f(s,2,u*) | Ys]) 2 E*[ps(2)f(s,2,u) | Ys] as. (5.3)
so the optimal control u* almost surely minimizes the ccnditional Hamiltonian.

If z = £ ,(z0) has a conditional density ¢,(z) under P*, and if f is differentiable in u,
(5.8) implies
k of
z :(u,-(s) - "?(3))/ I'(s,z) = (3,z,u")q,(z)dz > 0.
i=1 R4 au;

This is the result of Bensoussan [2].
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ORDINARY DIFFERENTIAL EQUATIONS AND FLOWS

ROBERT J. ELLIOTT
UNIVERSITY OF ALBERTA
DEPARTMENT QF STATISTICS AND APPLIED PROBABILITY
AND APPLIED MATHEMATICS INSTITUTE

1. INTRODUCTION.

The theory of stochastic flows was first developed in the works of Kunita (5] and
Bismut [2]; they have been used to discuss, for example, stochastic control [1] and the
Malliavin calculus [4]. However, some of the corresponding ideas concerning deterministic
flows do not appear so well known to those working in ordinary differential equations,

although they are probably familiar in terms of vector fields and their pull-backs to differ-

ential topologists.

2. DYNAMICS.

Consider an ordinary differential equation

dés = f(t, )dt (2.1)

where £ € R% and t > 0.
For simplicity we shall suppose f : [0,00) x R% — R%is C® and of linear growth.

Write E;,'; ¢ (z) = &t (z) for the unique solution of (2.1) which is such that &, (z) = z, i.e.,

t
bot(z) =z + /6 £, € (2))du. (2.2)

Partially supported by NSERC grant A-7964 and the Air Force Office of Scientific Research,
United States Air Force, under grant AFOSR-86-0332.
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Then it is known the map
ﬁ T — £ot (2)

is differentiable. Write

)
Dys(x) = Dy = 2@

for its derivative. Then D is the solution of the linearized equation
dD = f¢(t,€)Ddt (2.3)

with Dy, = I, the d X d identity matrix.

In integrated form this is

Dug =1+ [ felo, o () Dy (2.4
Consider the matrix V,; defined by
t
Vit = 1= [ Vi fels 0 (0 (2:5)
ie., dV = =V f¢(t, €)dt. Then V,,D,, = I and from (2.3) and (2.5)
d(VD) = (dV)D + V(dD)
= -V feDdt +V fe Ddt
=0
so Vst Dyt = I for all t > 0. Consequently,

Ver = D;"l = (?%@)—1 .

Suppose 2, for t > s, is some differentiable path in R%. Rather than the map z — & (%)

we can consider the composite map




Note t occurs twice on the right, so taking the derivative we have:

t
eﬂ,t (Zt) =2 +/ f(u) fa,u (zu))du

+f ,% (20)dze. (26)
Suppose g : R* — R? is a second function like f. Consider the equation
dé: = g(t, ¢)dt. (2.7)
The unique solution of (2.7) starting at z € B? at time s will be denoted by ], (z), so
L) =o+ [ "ol €8, (2))du. (23)
We then have the following formula for 9.

THEOREM 2.1. ¢&,(z) = ¢/, (2) where
taef, (24 -
=t [ (BN 0 o ) — 0 ()

PROOF. As above, we shall write &t (z) for E,{ t (¢) etc. Then, substituting this z in
(2.6):

t
ot (2t) =2 +/; flu o (24))du

+ /"t(afagx(‘?u)) (afaggEZu))"l (g(u, s (24)) ~ flu, Eau (Zu)))du

t
=2+ / 0(2, € (20))da.
8
However, (2.8) has a unique solution so
€04 (2) = Cot (1)

This result is particularly nseful in optimal control when one wishes to compute the vari-

ation in the cost due to a perturbation of an optimal control. See |1} and [4].
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3. BACKWARD EQUATIONS.
Consider the solution &,¢(z) of (2.2). If F: R® — R is a C? function, by the chain
rule

t
F(ést(2)) = Fl=) + /3 Fe(Eou (2))f (w, &oyu (<)) du. (3.1)

Consider a partition 7 = {s =y <t; < -+ < t, =t} of [s,t] and write

|r| = max |t;+1 — t;|. Then one can also write
!

n—-1

F(€et(2)) = F(z) = ) (Pl (2) = Fl€ea £ (2)))- (3:2)

k=0

If s < r <t, by the uniqueness of the solutions of (2.2), we have the semigroup property
of the flows

fs,t (:C) = Er,t (fa,r (:l:)) (3-3)

For the k-th term in the sum (3.2):

F(&y .t (z)) - F(&bu £(2)) = F (€t t (St tis (2))) = F(€tiin 4 (7))

= F(Eth-i-l K (y)) - F(ftk“ it (x))

where
k1

Y= by (2) =2+ f £ €0 () dus

k

By the mean value theorem this difference is:
0 z) [
= Pl s @) 28 [ fa, 60 @)
k

where 2 is some point on the line joining = and y. Using the differentiability of the functions

involved, this can be written as

17} (i
= F(€tp4y £ (7)) —&%‘;A‘)‘ S(trt1 s 2) (gt — k) + R




where |Rg| < C(tg+1 — tk)* < C|n|(tr+1 — tk) for some uniform bound C. The left side
of (3.2) does not involve the partition ; considering partitions such that || — 0 we have

the following ‘backward’ equation:

Féss(z / Fe(but (= af""( ) f(u, z)du. (3.4)

Clearly (3.4) holds for vector functions F. The solution &,;(x) of (2.1) is the ‘forward’
flow from z. Taking F : R — R? to be the identity, F(£) = £, we have from (3.4) the

following ‘backward’ equation for the ‘forward’ flow:
t
0 z
@ =2+ [ 24 s,z (3.5)
. z
By analogy with (2.1) we can also consider the following ‘backward’ equation:
—dEsp = ~f(s, sz )ds (3.6)

with a terminal condition z at time ¢. That is, we consider the ‘backward’ process fs,g (=)

defined by

fat /f u Eut(z (3'7)

S0 fg,t (z) = z. Again, the map z — é,,t (z) is differentiable with a derivative _§%t_£_) For

a smooth bounded function F : R% — R the chain rule, (in the s variable), gives:

t
F(éwt () = Flz) - / Fi(Bug (2))f (s £u (2))de. (3:8)

This is the ‘backward’ equation for the ‘backward’ flow. Similarly to (3.4) we can establish

the ‘forward’ equation for the ‘backward’ flow:

¢
: - - , w 0&4(2) .
F(f"xt (z)) =0 (z) - j[ r€‘csyu\ )) ‘az jlu’ )du (3'9)
8

In particular, taking F to be the identity map on R9, F(¢) =¢,

o
bt =2 [ 28 pu, o, (3.10)

5
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Approximation arguments, for example, would tell us that

f’ﬁ (gd,t (:B)) = éa,t (Es,t (13)) ==z

However, let us proceed as follows: Differentiating (3.7) the backward equation for the

backward derivative %‘— = ﬁ,,t is

By =1~ / el Bug () D du. (3.11)
Consider the augmented flow defined by the pair of equations (3.7), (3.11), with the ‘vari-

able’ terminal condition Dt,t = D. That is, consider f,,t (z) defined by (3.7) and ﬁs,t (z, D)
defined by

Dy(2,D) =D - / fe(ts Bug (2)) Due (=, D), (3.12)
Note equations (3.11) and (3.12) are linear, so that, if Dyt = Dyz(z,I) = Dy (2) is the

unique solution of (3.11), then Dyt (z)D = Dyt (2, D) is the unique solution of (3.12).
Therefore,

8D,s(z,D) 4
—ngf—-l = D,y (2). (3.13)

Applying (3.10) to D,y (z, D), and noting derivatives in both variables z and D are

involved, the forward equation for D,t z,D

Dyt (z,D) = / 6D,,., (z, D) f(u,z)du

~ /‘ 3Ds (z, D)
s aD
Putting D = I and substituting (3.13), the forward equation for Dy (z,I) = Dy (z) is:

¢ aﬁau Fa
[ 28] jtu, )t - [ Duw @ele, e

fe(u, z)du.

Dyg(z) =1I-

Using (2.6) we have

Dae (0t () = / aD"" (6 (2)) F (1, Eu (2))du

¢ t r
- /; f)s,u (fa,u (z))ff (u; fa,u (x))du + [ 3?;1; (f-s,u (:v))f(u, fs,u (x))du

t
=1 /a Da,u (fa,u (3))f€ (’u, s (z))du

6

;ﬁ‘mﬂ“r 2 "

by ey 4
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Therefore, D ¢ (¢, (z)) satisfies the same equation, (2.5), as that defining V,;. By unique-

ness, we have the following result:
THEOREM 3.1. D, (¢ (2)) = Viy = D;} (z).

Similar arguments in the opposite time direction applied to D,¢ (z), defined by (2.4),
show that

Dyt (&t () = D3} (). (3.14)
Using flows the following result can be established:

THEOREM 3.2. &54(éss(2)) = 2.

PROOF. Applying (2.6), and using the forward equation (3.10) for £, (z)

A t Fy
fc,t (fa,t (x)) =T+ /s f(“, fs,u (63,'& (:z:)))du

t
- /; De,u (éa,u (z))ﬁa,u (:E)f(u, :B)du

t
=2t [ (70 oo () = S 2 (319
8
by (3.14). However, &4 (&4 (z)) = z is a solution of (3.15), so the result follows because
(3.15) has a unique solution.
Similar arguments again show f,,t (&5t (2)) = =.
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Abstract: Strong variations are described for the e-optimal control of a class of control problems for systems described by stochastic
diffusion equations. The differentiation process develoned identifies the adjoint process.
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1. Introduction

In an earlier paper [4} the authors have applied a powerful non-convex minimization result established
by Ekeland [3] to derive a local approximate minimum principle for a partially observed control problem.
A metric is introduced on the space of admissible controls which measures the distance between two
controls. A strong variation of an e-optimal control leads to an inequality, where on the right hand side
this metric appears. As it can be expressed by a measure on the set where the perturbed g-optimal control
and the control itself differ, the inequality may be differentiated to obtain the local minimum principle.

In [1] theorems by Bismut [2) and Kunita [6] on stochastic flows are applied to give an easy and explicit
calculation of the change in the cost due to the strong variation of an optimal control. These results are
used here to describe the strong variation of an e-optimal control. Using the result of Ekeland [3] the
resulting inequality can be differentiated, so giving a completely new proof of the results in [4].
Furthermore, the differentiation process identifies the adjoint process; this is the main contribution of this
paper. The underlying model here is the one considered in [1] and differs from the one in [4]: the drift
coefficients f, h and the diffusion coefficient g in both signal and observation process depend only on the
current state of the system, and not on the whole past as in [4}; the controls, however, need not be Markov.
Furthermore, we impose differentiability assumptions on these coefficients and on the cost functional.

To apply Ekeland’s result we show that the cost function of the control problem described in Section 2
is continuous when the control functions are topologized using the metric

d(uy, uy) =P({(t, x) €[0,1] X C([0,1], R™) [y (1, x) # uy (1, x)}). (1.1)

Here P is the product of Lebesgue measure on [0,1] and Wiener measure on C({0,1], R™).
Then Ekeland’s result [3] tells us that for any e> O there is a control function u, such that

J(u,) sinf u(u) +¢ (1.2)
and for aii other control functions u,

J(u) =J{u,)y—ed(u,, u). (1.3)

0167-6911,/89/83.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

s o e~

st e 8




64 R.J. Elhott, M. Kohimann / Variational optimal ¢ ntrol

That is, «, minimizes the functional
J(u)=J(u) +ed(u, u,). (1.4)

It is then shown that u, minimizes to within e the conditional expectation of a certain Hamiltonian
H(s, x, &, p, u), where £ is the output of the system for control u,, and p is an adjoint process which will
be derived explicitly.

2. The control problen:

We shall treat the same control problem as in [1]. Let as quickly sketch its basic properties.
Suppose the stiaic of the system is described by the stochastic differential equation

dg,=f(1, &, u)de+g(r. &) dw,. §&ERY g=x,€RY 0<i<l. (2.1)

We shall make the following assumptions:

Al x, is given; if x, is a random variable and P its distribution the situation when [|x|? d Py < o for
some ¢ > n + 1 can be treated by including an extra integration with respect to P,.

A2. [.[0.]]XxR*x U —>R“ is Borel measurable, continuous on the compact metric space U for each
(¢, x), continuously differentiable in x with derivative f,, and for some constant X,

T+ 1xD NS x o w) ]+ £t x, w) | 2K,

A3. g.[01] xR > R*®R" is a matrix valued function, Borel measurable, continuously differentiable in
x with derivative g, and for some constant K,,

lg(r, x)1+1g.(1. x)| < K;.
The observation process is given by

dy,=h(¢)dt+dy,. y€h™ y=0, 0<sr<1. (2.2)

In the above equations w= (i',.... w") and »=(#'....,»™) are independent Brownian notions. We
also assume:
Ad. h:RY - R™ is Borel measurable, continuously differentiable in x, and for some constant K.

Ih(1, x) ]+ 1h (1. x) | S K.

As noted in [1] these conditions can be relaxed.
Let P denote Wiener measure on C([0,1]. R") and p denote Wiener measure on C([0.1], R™). Consider
the basic space £ = C([0,1}, R") X C([0,1], R™) and define Wiener measure P on £ by

P(dw, dy) = P(dw)p(dy).

The control parameter u will take values in a compact subset U of some Euclidean space R*. Let
Y = {Y,} be the right continuous, complete filtration generated by (3. s < ). Then an admissible control
is a mapping

u:[0,1] x €({0,1], R") » U

which is Y-predictable. Write % for the set of admissible controls.
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For u € % and x € R write £ (x) for the strong solution of (2.1) corresponding to control x and such
that § (x) = x. Put

23, (x) = exp [ (2, ()) =4 ['h(82,(x))" ar

and define a new probability measure P* on £ by dP*/dP =Z;,(x). Then under P“(&g,(x0) 3) s a
solution of (2.1) and (2.2), that is £;,(x,) remains a strong solution of (2.1) and there is an independent

Brownian motion » such that y, satisfies (2.2).
We shall consider a terminal cost given by some continuously differentiabie, bounded function

¢(£6,(x0)). The cost for admissible control v & % then is
J(u) = E,,[c(é(',‘.,(xo))] = E[ch.x(xo)c(go.l(xo))] . (2.3)
It is shown in [4] that J(u) is continuous on %, when # is given the topology induced by the metric
d(uy, uy) =P({(1, y) €[0,1] x C([0,1], R™) |1, (1, y) # uy(t, ¥)})-
Furthermore, it is shown there that (%, d) is a complete metric space.

3. Stochastic flows

It is not known whether there is always an optimal control for the problem described 1n Section 2.
However, there is always an e-optimal control for any & > 0. Consider such an e-optimal control (¢, 1)
satisfying (1.2) and (1.3). From our observations in [1] there exists a countable, dense subset of %, and for
the strong variations below we only take elements from this subset.

Let u, be a strong variation of u, defined by:

u(r.y) ifs<.<s+h<l.

|

For notational convenience drop the subscript / in u;,. and let (£ ,) be the strong solution of the dynamics
(2.1) with input «,, and (£},) the solution for input u, i.e.,

u,(t, y) otherwise.

gl = ;,,(x)=x+/s’f(r. ), () dr [g(r, &,(x)) dw, (3.1)
and
f',=,r+f’f(r, Y (x), u(r)) dr+flg(r‘ Y (x)) dw,. (3.2)

It is well known (see [6]) that there are versions of these solutions such that &5 (-): RY - R" is almost
surely a diffeomorphism, with a Jacobian C, = (9£;,/9x)(x) which is the solution of the equation

d
dC,=f(t, & ,(x), «)C de+ Y gi(r, §5,(x))C dw!, C,=1 (nXn identity mat, (3.2)
re=]
Here f, denotes the partial derivative of f with respect to x and g; denotes the gradient of the i-th column
of g.

The inverse of the Jacobian D, = (3¢ (x)/dx)~", C,D, =1 for t > 5, also satisfies a siochastic differen-
tial matrix equation, namely
d

D=1 ‘[D,fx(r, £,(x), ) dr= % [Dgi(r, &) dw;

=15

d

- L [DAgilr g,0x))) dr. (34)

T3 el

[
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Next we describe a change of drift induced by considering a certain semimartingale (z,) as the initial
condition in the dynamics equation. This result is due to Bismut {2]. It allows us to consider £;,(x) as the

unperturbed process &5, with initial condition (z,).

Theorem 3.1. For the perturbation u of u, consider the semimartingale

ag_\'r < ) - € 3 €
men [ (0 .20, 1) =10, 8,0, W) 0 (33)
L)
Then the process &5 ,(z,) is indistinguishable from £ (x).

Proof. From the results of Bismut ([2], Theorem 3.1) £ (z,) is a semimartingale with the representation

ey =x+ 1 8,2, ) dr

gr (x,) \ (&, ()™ . .
[(B52)(Z52) U0 .60, 1)~/ 802, w) ar
+ [g(r, £2,(2,) dw,. (3.6)
That is,
(z,)= r+/f(r z). u, dr+fg(r < (z,)) dw,.
As the solution (£;,(x)) of (3.2) is unique it follows tha £f,(z,) =& ,(x). Note that for 1>s+
2 =60 ,(20) =& on (8L s L n(X)). because u equals u* t: c+handsoz, =z, fort>s+h.
D
Next we study the augmented flow (£, (x). Z£,(x. z)), i.e., the diffeomorphism on R“*! given by
j‘,(x) =x+ /tf(r, §_,(x), ll,) dr+ frg()-, g;_r(,\')) dw”
1 £ £ 1
Zi(x)=z+ [Z5,(x D)h(E,(x) dy. (3.7)
To justify this discussion note there is a strong solution of (3.7) defined for every u € U and y € C([0,1},

R™), because the stochastic integral in the exponential defining Z can be integrated by parts.
As 3¢ ,(x)/3: =0, 3f/0z=0, 9g/0z = 0, the Jacobian for the augmented flow may be represented as

ag;(x) o |
<=l oz 9zx, 2) (38)
ox 9z

Yorpoprtareign 8 TE aneiofian
and the Jacobian of 1,, . satisfies

) § i (o BN KL |y ) ideD)
i X 2 dx, r

for 1 <i <d. Here summation takes place over double indices.
Obviously, we are only interested in the solution of (3.9) for the case z = 1. Write Z] (x)=Z;,(x, 1)
and from [1] we cite the following result.
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Lemma 3.2. (i) The following representation holds:

9Z,(x) . 35?.,(X)
Tax =Z(x) /, (& T ax dw,
and (ii) Z{ (z,) = Z;' (x), where (z,) is the semimartingale defined in (3.5).

Again note here for ¢t > s+ h,

Ztl(“l) = Z;:(‘:-:-h)

4. The minimum principle

The cost associated with u© is given by

J(ut) = E{Z&l(-“o)c(gﬁ.l(-‘:o))]
= E[Zé.s(-\'o)Zs‘.x(-\')c(éf.l(-“))] (where x = £6.5(x0)).

and the cost corresponding to the perturbed control is

J(u) = E[ Z5 (x0) Z4 (x) e(£:1(x))] = E[ Z5 ,(x0) ZEa (2o en) (&1 (20n))]

Now Z;,(-) and «(§;,(-)) are continuously differentiable. so we can compute the difference between these
costs as:

J(ut) = J(u) =EU:*I'A(5. roz ) (f(re 8,(z,). uf) = f(r. & ,(z,). u,))] dr

where

9¢; (=2
Als.r,z,)= Z{,_SZS‘_,(Z,){Cx(ﬁ,x(zr)) 5:;)({ )

ez Mol () 5 @ )}(aga—‘))
Then

J) =~ d(w) = [E[A G rz) = A I 820 ) =10 8,(2)- w,)) O
+ [E(A G o) = A DS () i) A e w,)) dr

+ RN O £ (20 u0) = £ (e €020 1)

Is

=f(ry ,00), ) +1(r, £.,(x), )] dr
+J/:*I’E[A(I', r, x)(f(", g;.r(x(’)’ u:) —f(r. 56.,(«\'0). u,))] dr

=1(h)+ I,(h) + I(h) + I,(h), say.
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Now

1 Us K [TE[1AG 7 2) = AG, 1 )11 +HE (o) ,a0)] a7

kb sup E[1AGs, roz) = Als, rox) |1+ (x) an)]s

ssrasth

l[z(ll)lSth sup ;E[ 'A(S: r, .\') —A(l‘, r JC) l(l +”£(X)l.-('\‘0)":+h)]’
ssrss+h

[L(h) | <Ksh sup E[1A(r, r, ) 1[E,(2,) = £,(3) |,a0]-

ssrss+h

The differences on the right hand side of the three above inequalities are uniformly bounded in some L7
and they converge to zero a.s. when & goes to zero. So, the differences converge to zero in L,-norm. Then

limh~ 'L (h)=0 fork=1,2.3.

u=0

From our remark in the beginning of Section 3, u is an eclement in a countable dense subset of #. As
5
LEIAG O 5. 050). ) =11 850 w))] dr

is finite, there are null sets N(u‘) and N(u), such that for s & N(u)U N(u®) the above expression is
differentiable, and

;,l.i.‘& RN I(u) = () = E[A(s, 5. x)(f(s. &5(x0)s ut) = f (s, &.,(x0). u,)]-

Therefore. from (1.3),

E[A(s, 5. x)(f(s. &.,(x0). ul) = f(s. &5(xq), 1.))] < hl_i,t(';l* (ad(u,. u)-}’-) <e (4.1)

because d(u. u*) < h. Using a general result of Kushner [7]. the same relation holds for the conditional
expectation E[-|Y,].
Write

pi) = 5 et o) 5L (et o) et o) oD a1y ()]

where E, denotes expectation under P
Then substituting in (4.1) we arrive at our minimum principle:

Theorem 4.1. Let u® be an e-optimal control and let u be any control in %. Then there is a Lebesgue null set
N, such that for s & N the following inequality holds:

Et[ps(x)(f(s’ 55.c(-\'o)- ll;) “f(si 55.3(1\70), lls)) 3}2] <e ae. 0O

Remark 4.2. (i) Note that if an optimal control «* exists, and if «° is replaced by «* in Theorem 4.1, then
we obtain the minimum principle in 1.
(it) If J(u) is Gateaux differentiable we may deduce from Theorem 4.1 the e-minimum principle in [5].
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1. Introduction. The theory of siochastic flows was developed by Kunita, [4], and
Bismut, [2]. The concepts and techniques from this theory have been used to discuss the
Malliavin calculus [1], and have again returned to deterministic flows, [3]. In this paper
we show how concepts from the theory of deterministic flows can be used to provide an

elegant proof of the Pontrjagin minimum principle.

2. The Dynamics of the Optimal Control Problem as a Flow.

Consider the control problem

(1) j:= f{t;l:,'.!'),()_.! T

s\

IA

(t) € R%, z{0) = zo, with u{-) measurable, u(tj € U C R™.

3]

We assume that f is sufficiently well-behaved that:
(2) solutions to initial value problems are unique in [0,T] x R?% and each solution

extends to [0, T;
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(b) the solution to the IV P (1), z(s) = zo, is a continuously differentiable function
of zg.
Let the associated cost functional, to be minimized, be defined by:
(2)  ¢[z(T)], ¢[]: R* — R differentiable. We remark that (a), (b) need only hold in a
“tube” of an appropriate sort about an optimal solution (u*(-), z*(-)) of (1), (2).
The Pontrjagin principle states that if (u*(:), z'(-)) is an optimal solution of (1) (2),
then there exists an absolutely continuous p(-) : [0, ] — R? such that
(3) f}é}}‘ p(t) - f(t,z*(t),v) = p(t) - f(t,z*(t), u*(¢)) in [0,T). In fact p(-) is a solution
of the adjoint equation to the linearization of (1) about z*(-).
We will show how this principle follows naturally from the use of ideas frem the
theory of deterministic flows.
If an initial instant s € [0, T}, an initial value z € R™ and a control u(-) are given, we
write the solution of (1) satisfying z(s) = z as €}, (z). Here the superscript u indicates the
dependence on the choice of control u(-); in addition we write u; for u(t). If (v*(-), z'(-))

is optimal, we write this pair as (u, & (z0)) and

¢
€0, (z0) = zo +/0 f(r &, (z0),ur)dr.

For any z € R? and any s € [0, T we now define &;¢(z) by the integral equation:

@ o) =zt [ 10,6, (), u)er

Notice that £, ,(z) solves (1) as a function of ¢, and takes on the value z at ¢ = s, but it is
not necessarily optimal, (unless s =0, z = 7p). Our assumptions imply that &;,(z) is a
continuously differentiable function of z. Differentiating (4) with respect to z, we obtain

the integral equation defining the matrix D, (z) = 56;(5;,: (z)):

¢
(5) Daple) = I+ [ 12,854 5), ) Duy (2)r

I s = = e e o
ERC S = RS R :5;5?,;1,,;‘-;, N = *




We now define V4 (z) for any z € R? and any s,¢ in [0,7) by the linear integral

equation:

t
©) Vaele) = I= [ Vo116, (2) )
LEMMA 1. (from [3]). Vir(z)Dst(z) = I for all s,¢t in [0,T), and all z € R%.

PROOF: Using (5) and (6), we see that
(i) Vee(z)Deelz) =1
(i) $(Vea(@)Dus () = (5r)P+V(FF) =
e Vag (@) (6 €5 (8), 5d) D (2) + Vg (2) 10, €44 (21,41 Dot ()
= 0.
Thus, V,z (z) = (Dyy (2)]™ for all s,¢ in [0,T] and all z € R?. In particular, we conclude
that D,¢(z) is always invertible.
Next, for any continuous map (path) z : [0,T) — R¢, we consider the composite
map @ : t — &, (2), i.e., the function ¢(t) = &4 (2) defined for s and t in [0,T] by the

integral equation:

dz

(7) B(t) = 2, + / (), u(r))dr + / Doy ().

This equation is obtained from (4) by differentiation with respect to t.
We now perturb the given optimal control u*(-) in the by now standard manner:

(8)

{ ug outside [s,s + hj,
U =
T l@eV inside [s,5+h],

and define the curve 2 : [0,T] — R? by the somewhat improbable integral equation (note

that the subscript (s,r) is reversed from (4)):

t
(S) 2t =T+ jf [Dsr (zr)i"‘ {f('f, f;,r (2¢),ur) = flr, E;,r (z,),u‘)]dr.

LEMMA 2.

Eap(2t) = €54 (z) forall z€ R%, s andt in [0, 7).

L TR H e A TR TTIE ST * e < -
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PROOF: By (7) and (9),
t
el) =2+ [ (€54 () )i
t -1
+ [ Do ) [Du )] 1, €4 ar),00) = Tl ), )]
8
t
= :z:+/ fr &oe (2¢),u,)dr.
8
The assertion follows from the uniqueness of solutions to (1).

3. The Minimum Principle. If we define z = £, (o), for a given s € [0, T}, then

the optimal cost can be written

clzr] = c[éor (z0)] = ¢[Easnr (Eoan ()],

for any h > 0, s € [0,T], s+ h € [0, T}, with z = & , (o).

Since u(-) cannot give a lower cost than u®(:),

c[boint (&0 (2))] S cllaoinr (Ehorr (2))] <

< cl€nr (Eoosn (zern))],

thus

(10) c[éir(2)] =[x (204n)] <O

forall s €(0,T}, h >0, (s+ k) €[0,T)].

This, with judicious ap

leads to the Pontrjagin principle. In fact, by the Mean-Value Theorem,

(2] [(6ir ) - Eir (o)) <0




I s
S e

for s, h as above, where the gradient of ¢(-) is evaluated somewhere on the line between

& (z) and &, p (Ze4n) in R%, Since we will shortly let k decrease to zero, this evaluation
point will become ¢, () = zp.

It follows from (4) and our assumptions on f that
dc
(11) [‘B'E]Da,T [:L' = Zs4h ] <0,

but here the rows of D, = 8¢, (z)/8z are evaluated at perhaps different points between
z and 2,44, because the Mean-Value Theorem is only valid for real-valued mappings and

hence must be applied to each component of ;. From (9) #e can write

s+h
(02) ez = [ Dag e 7l ar)o ) = e,y or) el
8
Combining (11) and (12), dividing by A > 0 and letting & go to sero, we obtain (noting
that D,y =1, 2, =z = 6,",):

a
02 [35(e8)] Dur (6) 1705, €0, 02) = F(s, 0,9

This is the Pontrjagin principle (3) with

(13) plo) = (22 (a1)) 2 (62.)

4. The adjoint equation.

By the semigroup property of the solution flows, for 0 < s <t < T;

(14) €0, (20) = &5 (&6, (0))-

Writing Dy, = -a-%—(z) and differentiating (14) by the chain rule

TNE Tyt a2 P 3
Loy = Lyy (80,6 (T0)) Do (Z0)-




Thercfore, using (15)
* ac * *
(16) p(s) Dy, (0) = 'gg(zT)Do.T (zo) = constant.

Differentiating (16) in s
pdD* + (dp)D* = 0.
That is dp = (—pdD*)D*~* . (We have noted in Lemma 1 that D§;! =V, exists.)
From (5)
dD(;,a = fz ("1 E(;,s (1’0)’ u;)Ds,a ds.

‘Therefore, p(s) is the solution of the equation

dp(S) = —p(s)fz (S’ ‘f(;,a (30)’ u;)ds

with initial condition

a * *
p(0) = 57 (=) Dixr-
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1. Introcuction.

From a very simple representation of the integrand in the integral representation of a
martingale, we derive an integration by parts formula. This is used to give a new proof of
the existence of a density of a diffusion process under the hypothesis that the inverse of
the Malliavin matrix is in some LP-space, a result implied ' | Zlormonder’s condition H1.

Following Malliavin’s original proof of this result there have been other approaches to
what is now known as Malliavin’s calculus, including those of Stroock {17], Shigekawa [16],
Bismut [4], Bichteler and Fonken [2], and Norris [15]. The main simplification in this
paper is the observation that no infinite dimensional calculus of variations is required.

This calculus can be replaced by ordinary differentiation in finite dimensional spaces.
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2. Some history and the H1 condition.

Let us consider the unique solution £ ,(z) of the stochastic differential equation

dés,((m) = }{0(t’€s,l(x))dt + Xf(ta éa,((x))dw;
£,5(z) = z € R (1)

where (w¢) = (w},...,w}") is an m-dimensional Brownian motion on (2, F, F, P) and
Xo,X1,..., X are smooth vector fields on [0,c0) X IRY, all of whose derivatives are

bounded.

It is a well known fact from harmonic analysis that & r(z) has a density if

|Ece(€o,7(x0))l £ K sup |e(z)], (2)
z€R4

where ¢ is any bounded, smooth function with bounded derivatives [14,17,4,20]. Using
different methods Malliavin (14], Stroock {17], Shigekawa [16], and Bismut [4] showed that
(2) is true if the inverse of the Malliavin matrix Moy is in some LP(2), and they linked
this result with Hormander's famous result to conclude that M7 is in all LP(), p < oo,
if Hérmander’s condition H1 is satisfied:

Condition H1: Xj,...,Xm, [X:,Xj], [Xi,[X;, X&), 4,7,k =0,...,m at z¢ span
R*.

Malliavin’s approach is based on a function space martingale calculus which comes
from the Ornstein-Uhlenbeck process on Wiener space [14); this is now known as Malli-
avin’s calculus of variations. Shigekawa [16] provided an alternative formulation which
relies on a Sobolev-type extension of Fréchet derivatives with Wiener measure replacing
the Lebesgue measure in the finite dimensional situation, and he makes no use at all
of the Ornstein-Uhlenbeck process. Stroock [17,18] also avoids this process in his en-
tirely functional-analytic reformulation of the Malliavin calculus. So far the approaches of

Shigekawa and Stroock (also cf. Ikeda and Watanabe’s contribution [12]) are reformula-

tions of Malliavin’s approach.
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Roughly speaking, these approaches rely on the analysis of a differential operator L,
which may be seen on the one hand as an operation on the Wiener chaos decomposition

of a Brownian functional F(w)

et T t2
LF(w) = Zm/ / fm(t1y .o tm)duy, ... dwy,,,
0 0

m=}

or as the generator of a time changed Brownian sheet {S-(¢) | (r,t) € [0,00)?}, namely
Ve(t) = €757 Ser ()
seen as a process on C(0,00). For a “good” function ¢, we then find

(F) = =( = L(Fe(F)) + c(F)LF + FLF) - A7, (3)

[N

where A is the inverse of the Malliavin matrix A = (DF,DF) = Z:(D;,.'F)2 and Dy
is the directional derivative in the direction of the integrated elemer;t k' of a complete
orthonormal system on [0,T]. The analysis of the right hand side of (3) then leads to a
bound on E|c'(F)| as required in (2).

Zakai pointed out that LF may also be seen as the L-limit of

F(w) = E[F(V1 - e w + \ew) | F¥]
6 b

where the relation to the generator of the infinite dimensional Ornstein-Uhlenbeck process

becomes apparent [19,20], as this non-coherent derivative may be interpreted as

BF(Cw) 82 ‘
——3C - - 256—2- F(w+e/h,ds)

e=0

= D'F — trace D*F. (4)

Bismut however gives a different approach which expresses the Wiener space deriva-

tives as function space derivatives in a Girsanov functional. The basic idea here is a

3
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perturbation of Brownian motion by a small drift ¢ - fu,ds (u, a predictable function).

Then
0
D F(w) = % F(w-{-e/uds)

e=0

However,

E(F(w)) = BlF(w+e [ uds) 7]
where 7 is the Girsanov functional, the solution of

yr=1-¢ /r'y,u,dws.
With
EF(w)) = BlF(w+ [ eud) rr]
~ E(F(w)] + E[DF(w)] - e E[F(w) / uds]

we find the Bismut integration by parts formula

E[F(w) /u,dw,] = E[D,F(w)).
Applying this to “nice” functions ¢(F') - g, formally we find

E(F)(DF)™" [ udu] = E[(F)DLFY DuF +o(F)Du((D.F)™)]

and
Ed(F)= E((:(F)(D,,F)"l /udw) - E(c(F)Du(DuF)’l). (%)

(D F) now plays the role of the Malliavin matrix, and the assumption that D, F > 0
for a suitable predictable (u,) leads to a bound on |E¢'(F)] in (4) as required in (2).
In the survey article, [20], Zakai points out that the Malliavin and Bismut approaches

are not equivalent.

We follow here, more-or-less, the Bismut approach, but where Bismut considers vari-

ations in a function space our formulation reduces the Malliavin calculus to differentiation
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in a finite dimensional space for the situation where the Wiener functional is just a solu-
tion of a diffusion equation as in (1), F(w) = y1(zo). The key observation which leads to
our result is a martingale representation formula which might be seen as coming from the
folklore of mathematics, but it provides us with a new formulation of the integration by
parts formula, which - as is well known - always plays the fundamental role in Malliavin’s

calculus.

3. Representation of martingales.

Consider the solution &g ¢(zo) of (1) and let ¢ be a twice continuously differentiable
function for which ¢(& 7(z0)) and the components of ¢¢(€,7(z¢)) are integrable. We then
have the following representation for the right continuous version of E{c(& 7(z0)) | F¢) =:

my.

THEOREM 3.1. The martingale m;, 0 <t < T, has a representation as

t
o= Blelto(zo))) + [ (s)dw}
0
with
7i(s) = Elc(€o,7(20)) Do, | Fo]Dg s Xi(s, €o,5(20)), (6)
where D, ; is the Jacobian of the stochastic flow,

aés,l
dz

Ds,t =

Note that from the foliowing theorem cited from {3,8] D,  exists as a solution of a

stochastic differential equation.

THEOREM 3.2. There is a map € : 2 x [0,00) X [0,00) x R? = R? such that
(i) for0<s <t<T, z€RY, €,.4(z) is the essentially unique solution of (1);

-

0




(i) for cach w,s,t the map &, (w,) is C®(IR?,R?) with a Jacobian which satisfies

(l’Ds‘g = aJY (t f_g ((:E))Ds tdt + aaf (t 63 g(il?))Ds tdw,

D, =1, the identity matrix;

2

. . 8, .
(iii) the second derivative W, = 502 satisfies
z

0X 0X; :
dI/Vs,t = O(t 63 ,(x))W, gdt T 6 (t, {3,,(:1:))[473,,(111);

32X &X;
662 (t fs l(x))Ds t ® Ds tdt + 662 (t és g(:E))D, t ® Da tdwg

W,,=0€R‘®R!® R

Proof of 3.1: Any F;-martingale (m) may be represented as

¢
my =mg +/ 7:(s)dw,
0

for a predictable integrand ;. As €o,4(z0) is Markov

my = Elc(§o,7(z0)) | F]
= Elc(§,7(2)) | F]
= Eyze(§,7(2))]
= V(t,z), where z =& (z0).

Then applying Itd’s rule to V(¢,z), z = & (zo) gives

V(t,&o.e(20)) = V(0,20) + /0 (%K + LV)d

/ o (5, 60,5(20))Xi(s, &o,5(z0))dw}

b R N
b




with

1 r)
=Xog-+3 Z‘Y‘A*axax,

As (m¢) is a martingale, from the uniqueness of semimartingale decomposition we must

have

v
(5o +Lv) =0

and
75) = T (5,605 (=) X5, o.(20))

Differentiating V' we thus arrive at

7i(s) = Ele¢(éo,r(z0)) Do,r | Fu] Dg s Xi(s, €o,s(x0)). (7)

a

Now let u(s) = (u1(s),...,um(s)) be a square integrable predictable process. Apply-

ing the above representation we find the desired integration by parts formula.

THEOREM 3.3. Under the above assumptions the following equality holds

E[e(éo,r(z0) / wi(s)dwi] = B / Elce(Eo.1(20))Do.r | FJDF X(s)us(s)ds

T
= E[cf(fo,T(xo))Do,T/ D&ix;(s)u;(s)ds]
0
by Fubini’s theorem.

In particular, putting ui(s) = (Dg}X.(s))"* and considering the product function
h(§o,7(0)) = c(€o,7(z0))9(60,r(z0) we have

THEOREM 3.4.
O S .
-’-‘/lC(CO.T(xo))gkéo,T(ivo))lj (Dy ,zi(s))"dw; = E|(ceg + cge) Dor Mor),
0

where
m

M, = Z/ D7 Xi(w)X} (u) D33 du.

7
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M, is the Malliavin matrix. a

In order to obtain a bound on ¢; we now would like to take
9= Mg 1+Dgr,

but this function not only depends on £ . To get around this difficulty we have to enlarge

the system in the following way.

4. Existence of a density for & r(zo).
When enlarging the system the results of 3.2 might no longer hold for ¢,  replaced by
the new system as the coefficients are no longer bounded.
We consider the flow defined by (1), its Jacobian D, (, the martingale
Rso(z) = L‘(D;,’,X;(u))‘dwi, and the inverse of the Malliavin matrix
M= [ D71 Xi(u)X} (u)Di7 du. Then for

$O(w,s,t,2) =& u(z), 7 =E,4(30)
DNz) = D,dz), D = Dos0)
Di)(20) = DD
RO(z) = / (DI X ()" duw's (8)
R®) =R+D'R0(z), R=R,
M) = M, (z)

M{) =M+ DM, (z)D*™, M =M,

the enlarged system ¢(!) = (¢°, D%, R, M®) is Markov. We now would like to apply a result

similar to 3.2 to this enlarged system. Introduce the set S,(dy,...,dr), a,d,dy,...,dk

8
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positive integers, of C* functions X : IRY — IR? of the triangular form
XM(gh)

X(2)(:z:l,:z,‘2) (1;1

X(z) = . for z= : |, ' e RY
; kmk
X*(z!, 22, 25)

and IR = R% x --- x IR%, which satisfy

[DX ()| "
X = su u V sup |D;XO(2)]) <
XNl s(ar, ) :C—_III{)‘ (ogsngN 1+ |zl 1;.2&] J ( )l> o

for all V.
Note that ¢! is Markov with coefficients 1n S(d, d+d?, 2d+d?, 2d+d?), and following

Norris [15] we may state the extension of 3.2.

THEOREM 4.1. Let zg,£1,...,2Z, € Sa(dy,...,dr). Then there is a map ¢ : 2 x [0, 00)? x
R¢ — IRY such that

(i) for0<s<t, z€ IR?, ¢ is the essentially unique solution of
dz, = Xo(z)dt + Xi(z)dw!, z,=z;
(i) for all (w,s,t), ¢ is C™ with derivatives of all orders satisfying stochastic differential
equations;
(iti)

sup E[ sup |[D"¢(w,s,u,z)|?
jz|<R  La<u<t

..<. C(p)R)N)dh'-wdk) «, “.XOHS‘,.N,---,”Xm”S‘,‘N)-

0O
Furthermore, we can consider the Jacobian of (1), say D), and construct R§‘2 =
f: Dﬁft),_lX fl)(u)dwf‘, and let M S,) = (R(,l,() ®R(,?() *) be the predictable quadratic variation
of R! and RO~
This 4-tuple defines ¢(? = (¢, DM RM) MM and inductively we can proceed to
define ¢ for all n, and Norris’ result holds for all ¢(*),
Now apply 3.4 to ¢(¢(¥) - g(¢")) to obtain:

9
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COROLLARY 4.2.

Efe(6)g($") ® RO = E((Voc)(¢°)g(¢" ) Do, Mo,r]

+ Ele(¢°)(V1g)(41)D' M),

and for

g(¢) = Mz D}

we find

Elce(€o,7(x0))] = Elc(€o,7(z0)) My +Dg 1+ ® Ro,r

— Ele(éo,r(20))(V19) Do,r Mo, r DR M.

O

An application of Jensen’s, Burkholder’s, and Gronwall’s inequalities with Norris’
result implies that all terms, except possibly Mg +, are in all LP, p < oo. If now we
assume that M 4 is in some L?, e.g., if we assume H1 to hold, then we have the desired

result.

THEOREM 4.3. Let & r(zo) be the solution of (1) and ¢ a bounded C* function with

bounded derivatives. Then if My} is in some L?

|Ece(€o,m(z0)]l < K sup [c(z)].
rz€IR¢

With this result, D. Williams’ ‘ridiculous’ example on the existence of a density for

the Brownian motion really becomes trivial:

|E[c"(w1)]] € |Ele(wr) - w1]] £ sup ¢(z) - const.
zeR4

10
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5. Application.

The Malliavin calculus could not have attracted so much attention if there were
not many important applications, together with the remarkable fact that it links the
Hormander partial differential equation mcthods with probabilistic aspects. Within stochas-
tic analysis it provides many helpful tools, such as, for example, the integration by parts
formula which is equivalent to a martingale representation theorem. In tiltering theory,
D. Michel and J.M. Bismut [5] used the calculus of variations to prove the existence of
densities for optimal filters, and Jacod and Bichteler [1] extended these results to diffusion
processes with jumps.

Many of these results can be simplified by using the finite dimensional calculus devel-
oped above. The full details are found in [9,10,11].

J.M. Bismut [7] (also cf. [13]) applied the results from Malliavin’s calculus to the
theory of index theorems in algebraic topology and to large deviations problems [6).

Recently, there have been several attempts to develop a notion of anticipative stochas-
tic integrals. This would allow one to consider functions u(s) above which might not be
predictable and, in turn, this would then allow the development of Bismut’s Malliavin

calculus to its full strength.
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Martingale Representation and Hedging Policies

David B. COLWELL
Robert J. ELLIOTT
P. Ekkehard KOPP*
Department of Statistics and Applied Probability
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Edmonton, Alberta, Canada T6G 2G1

The integrand, when a martingale under an equivalent measure is represented
as a stochastic integral, is determined by elementary methods in the Markov
situation. Applications to hedging portfolios in finance are described.

martingale representation * Girsanov's theorem * stochastic flow * diffusion *
hedging portfolio

1. Introduction.

In the modern theory of option pricing and hedging, the representation of martingales
as stochastic integrals plays a central role. Since the corresponding integrands immediately
lead to hedging strategies, it is of considerable interest to find explicit expressions for these
integrands.

The martingale representation result and its background is fully described in the paper
of Ocone [12], where the problem is discussed using methods of the Malliavin calculus and
weak differentiability in certain Sobolev spaces. In a recent paper by Ocone and Karatzas
[13] the representation result of [12] is applied to determine optimal portfolios and hedging
strategies.

In the Markov case elementary methods, which do not use the Malliavin calculus in
function space, are employed by Elliott and Kohlmann in [5] and [6] to determine the
integrands in certain stochastic integrals. Indeed, all that is used is the Markov property
and the It6 differentiation rule.

The present paper extends the representation result of [6] to the situation where the
martingale representation takes place with respect to an equivalent measure whose Gir-
sanov exponential is defined in terms of a Markov integrand. The motivation for the
Girsanov measure transformation is developed by Harrison, Kreps and Pliska [8], [9]. A
Markov Girsanov transform clearly introduces a new integrand in the martingale represen-
tation, and this is made explicit in Theorem 3.1. It is possible this result could be derived
as a corollary of the general result of Haussman and Ocone, see {12]. However any such

*Permanent Address: Department of Pure Mathematics, University of Hull, England HU6
Research partially supported by NSERC Grant A7964, the Air Force Office of Scientific
Research, United States Air Force, under contract AFOSR-86-0332, and the U.S. Army
Research Office under contract DAAL-03-87-0102. The first author holds a Province of
Alberta Graduate Fellowship.




relation is certainly not transparent and our proof, again in the Markov case, is simple and
direct.

The application of our martingale representation result to option pricing is described
in Section 4. Stock price dynamics which give explicit, closed form expressions for hedging
policies appear hard to find. However, in Section 5 we show how our result gives the hedging
policy in the well known Black-Scholes case, (1], of log-normal prices with constant drift
and variance.

2. Dynamics.
Suppose w = (wl,...,w™) is an m-dimensional Brownian motion defined for ¢ > 0 on
a probability space (€, .7-' P) Consider the d-dimensional stochastic differential equation

dzy = f(t,z¢)dt + o(t, z)dwy (2.1)

for t > 0, where f : [0,00) x R¢ — R% and o : [0,00) x R? — R? ® R™ are measurable
functions which are three times differentiable in z, and which, together with their deriva-
tives, have linear growth in z. Write £ ¢(x) for the solution of (2.1) for ¢t > s havmg initial
condition €5 s(z) = z. Then from the results of Bismut [2] or Kunita [11] there is a set
N C Q of measure zero such that for w ¢ N there is a version of & () which is twice
differentiable in z and continuous in ¢ and s.

Write D, 4(z) = —%t——- for the Jacobian of the map & — & ;(z); then it is known
that D is the solution of the linearized equation

st,t(:v) = fz(t, xt)Ds,t(m)dt + O'm(t, mt)Ds’t(m)dwt

with initial condition Ds s(z) = I, the d x d identity matrix. The inverse D;tl (z) exists;
see [2].

Suppose ¢ : [0,00) X R _ R™ satisfies similar conditions to those of f and define
the (scalar) exponential Mj ¢(z) by

t
Mygle) =14 [ Morloolrbor(a): dor
St (2.3)
=1 + / dw;’: * 9(7‘, €S,T(1:))M3,T(m)’
S
where * denotes adjoint and - inner product in R,

Write {F}} for the right continuous complete family of o-fields generated by w. If, for
example, g further satisfies a linear growth condition

lg(t, 2)| < K(1 + [z)
a new probability measure P can be defined by putting

dP
z.l? Ft - MO,t(mO)'

2




Girsanov’s theorem then implies that @ is an {F;} Brownian motion under P where
diby = dwy — g(t, 0,1 (20))dt. (24)

Let ¢ : RY — R be a C2 function_which, together with its derivatives, has linear
growth, and for 0 < ¢ £ T consider the P martingale

Ny = Ele(éo,7(20)) | i)

Then from, for example, Theorem 16.22 of [4] N; has a representation for 0 <t < T as

t
Ny = Ny + /0 sdiss, (25)

where v is an {F}} predictable process such that

T~ 2
/0 Elys|®ds < co.

3. Martingale Representation.

THEOREM 3.1.
~r (T .
g =E[ A diy - 9¢(r,€0,+(20)) Do,r(20) - (0,7(20))

+ cg(€0,7(20))Do,1(20) | Fr| D5 }(z0) - o(t, €0,4(20))-

ProoF. For 0 <¢ < T write z = f(},t(xo)- By the semigroup property of stochastic
flows, which follows from the uniqueness of solutions of (2.1),

€o,7(z0) = &,1(60,t(20)) = &, 7(2)- (3.1)
Differentiating (3.1) we see
Dy 7(z0) = Dt,1(z)Do ¢(0)- (3:2)

Furthermore,
My 7(z0) = My 4(z0)Me,T(). (3.3)

For y € R define V(t,y) = E(M; 7(y)c(é 7(y))], and consider the martingale
Ny = Ele(€o,r(20)) | Fi]

_ E[My p(=p)e(§o,r(=0)) | Fi]
- E[My (o) | F]




= E[M;(z)e(ée,7(x)) | F]
= E[M; 7(x)c(é,7(2))], by the Markov property.

Then from Lemma 14.18 of [4]
Ny = V(t,a:).

We noted above that ¢ 7(z) is twice differentiable in z; the differentiability of
E[Mt,T(m)c(ﬁt,T(x))] in t can be established by writing the backward equation for
(My,7(2), &t,7(2)) as in [11).

Under P, €0,¢(z0) is given by the equation

¢
E04(w0) = 50+ [ (F6,60,0(00)) + 7 fs,,0(z0)) s

3
+ [ ots, 6o a)adi. (34)
If V(t, §0,¢(z0)) is expanded by the It5 rule we see
V(t,z) = V(t,60,4(z0)) = Ny ‘

~ t 7 o~
= V0200 + [ (Fr(o:6o,5(e0) + L7 (5,80 s(e0)) ) s

gl (zg))dw 3.5
* ) B (8,€0,5(z0))o (s, &0 5 (20))dis. (3.5)

Here
d .m N B i d 82
- i S T L2
L= Z(f +Zdijg )Bxi +2 Z %ij 0z;0z;
=1 j=1 1.j=1 J
where a(t, z;) = (a;;(t,z1)) is the matrix go*. Now Ny is a special semimartingale, so the
decompositions (2.5) and (3.5) must be the same, As there is no bounded variation term
in (2.5) we see immediately, similarly to (7], that

% .
aa_t(s,fo,s(a:g)) + LV(s,60,5(2)) = 0

with V(T,z) = ¢(z). Also

1%
Ys = b-x—(s,Eo,s(wo))a(s,éo,s(wo))
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However, & 1(z) = £p, () 5o, from the differentiability and linear growth of g:

B 5
a_va%._). [-—'A—lia—z-:(—)c(fo 7(2g)) + My T(m)"—(gt T(x))]

Again using the existence of solutions of stochastic differential equations which are
differentiable in their initial conditions, we have from (2.3)

OM; p(z oM,
PLO _ [ it ot o0 2 4 [ - g 1,0 2 21,000
(3.6)
However, we can solve (3.6) by variation of constants and obtain
oM p(x T .
T g [t gl o)) Dis ) 67)

The result can be verified by differentiation, because (3.6) has a unique solution. Therefore,
with 2 = £,1(a0),

V T
@'faﬁfﬂ = E[Mt,T(‘”){/t diy - g¢(r, &t,r(2)) De,r(x) - c(é0,7(20))

+ e (6,7(@)Dyr(2)} |

~t (T
= B[ [ - gg(r,0,(20))Dop(e0) - cléo,(20))

+ ¢(60,7(20))Do,r(a0) | i D} (=),

and the result follows.

REMARK 3.2. The result extends immediately to functions for which a generalized Ité
formula holds; this class includes convex functions and differences of two convex functions.
See Karatzas and Shreve [10].

4. Hedging Portfolios.

It is shown in Harrison and Pliska [9] that hedging policies arise from a martingale
representation under an equivalent measure. Consequently, we give an application of The-
orem 3.1 in this section.

Consider a vector of d stocks

S=(st,..., sy

hiose prices are described by a system of stochastic differential equations of the form

d .
dsi = 8 (w(t, So)dt+ Y A, st)dwg).
j=1




e R R R

Models of this kind are usual in finance. When the p’ and \;; are constant we have the
familiar log-normal stock price. For economic reasons, so that the claim is attainable, see
[9], the number of sources of noise, that is the dimension of the Brownian motion w, is
taken equal to the number of stocks. A; = A(t,5) = (A;5(2, 5)) is, therefore, a dx d matrix.
We suppose A is non-singular, three times differentiable in S, and that A‘l(t, S) and all
derivatives of A have at most linear growth in S. Writing u(t, ) = (u1(¢, 9),..., ud(t, $))

we also suppose p is three times differentiable in .S with all derivatives having at most linear
growth in S.

We suppose the stocks pay nc dividends. However, suppose there is a bond S? with
a fixed interest rate r, so S? = e, The discounted stock price vector & = (§t1, e ,fd)' is
then & 1= e~ ™S} so

d :
dé; = & ((u’(t, erley) —r)dt+ Y it € MErdw] ). (4.1)
7=l
Writing
¢l 0
At = A(t>£t) =
o ¢,
and p = (r,r,...,r) equation (4.1) can be written
dfs = A((p — p)dt + Agdw). (4.2)

As in Section 2, there is a flow of diffeomorphi-ms z — £ 3(z) associated with this system,
and their non-singular Jacobians Dj 4.

In the terminology of Harrison and Pliska, [9], the return process Y; = (Ytl, R Ytd)
is here given by

dY = (p — p)dt + Adw. (4.3)
The drift term in (14.3) can be removed by applying the Girsanov change of measure. Write
7(t, S) = A(t, S)*(u(t, S) — p) and define the martingale M by

t
M;=1 —-/O Msn(s, S) dws.

l t
1
M; = exp (— /(; 7 dws - 5 ‘/(; ]n3|2ds)

is the Radon-Nikodym derivative of a probability measure P. Furthermore, under }3,

Then

t -~
Wy = wy + / n(s, S )/ds is a standard Brownian motion. Consequently, under P
0

dY; = Aydivy

| Dbk b 2




and ’
déy = A Aydig. (4.4)

Therefore, the discounted stock price process £ is a martingale under P so P is a ‘risk-
neutral’ measure. _ _ L
Consider a function ¥ : RY - R, where 9 is twice differentiable and ¢ and ¢, are of
at most linear growth in z. For some future time T > ¢ we shall be interested in finding the
current price (i.e., current valuation at time t), of a contingent claim of the form ¥(ST).
It is convenient to work with the discounted stock price, so we consider equivalently the

current value of —
P(ér) := (" &)

¥ has linear growth, so we may define the square integrable p martingale N by
Ny=E[p(ér) | F), 0<t<T.
As in Harrison and Pliska, (9], if we can express N in the form

_ t
Ny = Blp(ep)) + /0 #(s)'des

then ¢ = (951, ey ¢d)’ is a hedge portfolio that generates the contingent claim. However,
we can apply Theorem 3.1 to derive immediately:
THEOREM 4.1.

N t
Ny = Bly(ep)] + /0 $(s) des

where

$(s)=E [ /s ' 1¢(u, € " €0,u(20)) Do,u(z0)dBu - $(&0,7(20))
+ ¥e(€o0,7(z0))Do,1(=0) | Fs] Dy X(=o).
PROOF. From Theorem 3.1, under measure P
Ny = Ely(ér)) + /0 t Ysdis
where

o T
Vs = E[ /8 e Do,u(20)dWx - ¥(6o,7(20))

+ (60,7 (20)) Do, (x0) | Fs| Dy 3(20)A(€0,6(z0))As.

Because dé; = AjA¢dwy, ¢(s) has the stated form.

REMARKS 4.2. Note that if 7 is not a function of ¢, (which is certainly the situation
in the usual log-normal case where y and A are constant), ¢ is zero and the first term in
¢ vanishes.

The bond component ¢9 in the portfolio is given by

d
$)=N, - g1, 0<t<T
1=1

and Ny is the price associated with the contingent claim at time ¢.

I ——— - e e e
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5. Examples.

Stock price dynamics for which the hedging policy ¢ can be evaluated in closed form
appear hard to find. However, if we consider a vector of log-normal stock prices we can
re-derive the Black-Scholes results. Suppose, therefore, that the vector of stock prices
S =(51,...,5% evolves according to the equations

d .
as = Sj(wldt+ Y Nijew]) (5.1)
J=1
where p = (ul, . pd) and A = ();;), are constant. The discounted stock price £ is then
given by (4.2).

Consider a contingent claim which consists of d European call options with expiry
dates T} < Ty < --- £ T and exercise prices cj,...,cq, respectively. Then

d d
BT, Ty = 3 Vo m(20) = D (&, (w0) — cpe ™ THYT.
k=1 k=1

The ¥F are convex functions, so applying the generalized Itd differentiation rule of [10]
Theorem 3.1 is valid as noted in Remark 3.2 with

'gbé’ = (0, . ,O,I{f(l)c,Tk > C[ce—er}’O)- . -70)'

From (5.1) we see that the Jacobian Dy ; is just the diagonal matrix

r~ d , -
exp{ '21 /\1]'1'5{ —% allt} 0
]:
Dyt =
d i
0 exp{ Adjw{ -5 addt}
L J=1 i
and its inverse is
~ d .
exp{—('zlz\ljﬁg—%allt)} 0 1
:I:
~1
DO,t = :
S
0 exp{ - ( '21 AGW; — 5 addt>}
L J= N
8

IS e s Y s Al S e R e i O e - -— - = -




(The explicit, exponential form of the solution shows Dy ; is independent of z(.) Thus,
the trading strategy ¢ that generates the contingent ciaim Pk (éTk) is

#i(s) = Ef(€o,n,(s0)) Do,y | Fs) D s

d
= (0»- [I{fo Ty, > Che TT"}exp{jZ kJ(’“"T ~ )

}- akk(Tk.——s)} Ifs],(),...,()),

for 0 < s £ T}. Note that ¢p(s) =0 for s > T}, i.e., ¢p(s) stops at Tj,. However, from

(5.1),

d
{&Tk(xo) = :1:6" exp{ Z kaT - = akka} > cpe ~rT%
iff
d 1
Z ’\AJU’T > log (-—I;c) (§ app — r)Tk = qy, say; (5.2)
j=1 o
that is, iff

d : : d :
D (@, =T > ap = Y A3
j=1

i=1

Now, under P, JZ ’\ky(wT - ws) is normally distributed with mean zero, variance
app(Ty — 8), and is independent of Fy. Therefore, the nonzero component of ¢p(s) is

* 1 —2 dz
exp{x — = app(Tp — s)} exp —
/‘;k 2 ks ¢ {2akk(Tk —s) } V2map (T — )
j=1
=7 . ex { —[z — apr(Ti — 3)]2} dz
ag=— 3 Mgjw} 20T — 9 V2mapp(Ty — 5)
i=1
— *© « ~5 —y2/2 dy
- J’-’z'.-_LJ'\'i:j""s e (T =) \/2,”

Verr(Tg—s)

_ @(—ak + 3 A W5 + app(Ty, — 8))'

Vapp(Ty —s)




d : z(
Again from (1), 3 /\kjﬁg = log (—-Q’s—(—-)—> + § afk;S, which together with (5.2) gives
j=1 zg

£.5(
log (‘&%0—)) -3 app(Tp — 9) + T,

,0,...,01 ,
Vage(Ty = s)

$r(s)=10,...,0,®

or, in terms of the (nondiscounted) price $%,

sk i
log { T ) — (5 apr — )Tk — s)
0,...,0,® (ck) 2

=10,...,0, 0,...,0] , 5.3
P(s) Vapr(Ty, — s) (53)

0 < s < T. Therefore, the trading strategy ¢ generating ¢(Ty,...,T}) = E ¢k(§Tk)

can be written, with a slight abuse of notation, as ¢(s) = (¢1(s), ..., ¢4(s)), where

k
log (2£) - (§ ayy = )(T; - 5)
_, 5 ) 0.4
Sk(s) = Iis<my) apk(Ty, — 8) Y

~ d .
Finally, we calculate the price of the claim E[y(Ty,...,T;)] = 3 E[pF (¢1, )] similarly:
k=1

d d
Z E’[z/)k(CTk)] = Z E’(ﬁﬁ - cke—TTk)-i-
k=1 k=1
d d d

- LE [ { Z/\kng g ak}(ZOeXP{ > A kng -3 akka} — cpe TTkﬂ

k=1 _7 =1 ]=1

k

= Zd: ska log (24) + (§ agi + )Tk

k=1 vare Tk

— /log(c:>+(% ary + )T}

: \
- cke_”k@ k m - \/akka)

(where we have used {6“ = S(’)" , k=1,...,d). When d =1 the above result reduces o the
well-known Black-Scholes formula.
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FILTERING FOR A LOGISTIC EQUATION

R. J. ELLIOTT
Department of Statistics and Applied Probability, University of Alberta, Edmonton, Alberta T6G 2G1, Canada

I. INTRODUCTION

Filtering is a mathematical theory of estimating a “signal” from noisy observations. It has had
striking successes in many areas of engineering. For example, the linear Kalman filter described
in Section 2 below was derived in 1960 and is credited with a large role in the U.S. space program.
Once the theory and techniques are more widely known it is likely that filtering will have important
applications in other areas. Applications of filtering to biological problems can be found in Refs
[1-4], for example.

In Section 2 the form of the linear Kalman filter is derived. The analogous equation in the
nonlinear situation is obtained in Section 3. This equation has a quadratic term, so in Section 4
the Zakai equation for the unnormalized density is established. Finally, in Section 5, a logistic
equation with some noise is discussed. Using a technique of Kunita [5], it is shown how the
unnormalized conditional estimate can be expressed without using stochastic integrals with respect
to the observation process. Fuller details of the ideas described can be found in Refs [6, 7].

2. THE KALMAN FILTER

The basic idea of the model is that there is a signal process {x,}, which cannot be observed
directly, and a related observation process {y,}. The object is to obtain the “best estimate” of x,,
given the history of y up to time r. To illustrate the ideas we first discuss the linear Kalman filter.
For simplicity the processes will be one-dimensional.

Suppose the signal process is given by the following linear stochastic differential equation:

dx, = Ax,dt + C dW,,

where W, is a Brownian motion. Then

H
x,=xo+J Ax,ds + CW,.
0

The observation process will be assumed to be of the form
dy, = Hx,dt + dB,,

where B, is a second Brownian motion independent of W. Assume x,~ N(0, P,) and y, =0.
The filtering problem is to calculate a recursive expression for the “best estimate” of x,, given
{yo:s<t}
Write Y,=0{y,:s <t} for the o-field generated by y, up to time ¢ and

%= E[x,|Y,).

Then %, is the “best estimate” in the sense that it minimizes E(x,— z)? over all Y-measurable,
square integrable random variables z.

Calculating £, is a Hilbert space projection problem. Suppose (Q, F, P) is the probability space
on which our random variables are defined. Consider L2(), the space of square integrable random
variables of zero mean. For X, ¥ € L1(Q), the inner product is just E(XY).
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The process v has the following properties:
(i) v, is a Y, Brownian motion, i.e. v, is a Y,-martingale and (v}, =1t, where {(v) is the
unique predictable process such that v2— {v) is a martingale.

(ii) All Y-martingales are stochastic integrals with respect to v,, i.e. if M, is a Y-martin-
gale, then there is a process g, which is Y,-predictable and

1
Mr=J g dv,.
0

Suppose the signal process is an F-semimartingale &, given by

t
61=€0+J1 asds+'ll'
[

Here « is an F-adapted process such that

T
E [ alds < o0,
JO

&, is an Fy-measurable random variable with EEZ < 00, and 7, is a square integrable F-martingale.

There is a unique predictable process {1, B) such that y,B, — (n, B), is a martingale. We shall
suppose this is of the form

t
<”’ B)x = j ﬂ: ds.
0
Theorem 1. Write &,= E[¢, /Y, ] for the filtered estimate of &,, given Y,. Then

é‘l = 50 + J‘ &s ds + J (6_,;1(.'{,) - ésﬁ(xs) + B:) dvs'
0 0
Proof. Write
webim - [ s
0
Then it is easy to check that u is a Y,-martingale. Consequently, by property (i) above there is

a process g,, such that
t
ul = J‘ gS dv&'
0

Again we wish to determine g. To do this recall

é:=§O+J a,ds+r],, (1)
0
§,=’0+J&,ds+Jg,dv,, )
0 0
Yz=J h(&)ds + B, 3)
0
and
y,=J h(E)ds +v,. @
0

From equations (1) and (3), using the Ito rule:

iy = J Glh(E,) ds +dB] + f ys(a,ds -+ dn,) +J B, ds.
0 0 0

T
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Conditioning each side on Y,, we see that
o~
EEp |V =y = f () + yid+ Bi1ds + N1, )
0

where N! is a Y,-martingale. However, from equations (2) and (4), using the Ito rule:

1 f t t
y,§,=f 5:1?(6:)d8+f 5,dv,+J (G, ds +gsdvx)+f g,ds
0 0 0 0

=L’[£ﬁ(é,) yd,+g,]ds + N7, ©)

where N?is a Y-martingale. The decompositions of y&, in equations (5) and {6) must be the same,
50

Ni=N?

and
ENE) + 3,0, + By = ER(E) + 3,6, + g,

This gives g, = g'?z(g’s) =& h(E,)+ B, and the result follows. End of proof.
Suppose that x, is the solution of the stochastic differential equation

dx, =f(t, x,)dt + a(x,) dw,.
That is,
1 ¢
X =X+ j Sfls.x)ds + J a(x,) dw;.
Y 0

If Fis a C? function, the Ito differential rule tells us that

Flx) = Fx) + f Fu(x)f(5, x,) ds
1]

] [
+J Fo(x,)e(x,) dw, +% J Fo(x,)0(x,)* ds. )
0 0
Let us use the notation
II(F)= E{f(xr)t Y]

Then I, can be thought of as the conditional distribution of x,, given Y,, so that
M) = [ Feom, (e

Suppose w is independent of the observation noise B. Applying Theorem 1 to the semimartingale
F(x,) gives

e i
(P =) + [ LR 65 + [ L0~ L] dv, ®)

Here,
TF(x) = f(s, x)F(x) + 30 (x ) F (x)-

This equation gives an infinite dimensional recursive equation for the filtered estimate IT(F).
If we consider the case f(s, x) = 4, ¢(x,) = C, F(x) = x and h(x) = Hz, equation (8) reduces to
the Kalman filter derived in Section 2.
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4. THE UNNORMALIZED FILTERING EQUATION
There are two difficulties with equation (8). Firstly, it is in some sense quadratic in IT and,
secondly, it is driven by the innovations process v. Suppose we are considering processes defined
on [0, T). Define a new probability measure P, on &, F) by

dp,

T 1 T
- _ —_ 2
P exp[ L h(x,)dB, 2J; h*(x,) ds].

If & is of linear growth, say |/1(x)| <K+ [x|), then Py is a probability measure and under Py,
is actually a Brownian motion. This is a result of Girsanov’s theore
E, for expectation with respect to P, and

M
m [6, Theorem 13.14]. Write

H t
A= exp[f h(x,)dy, —~ %f h¥(x,) ds].
0

0
Then, using a Baye’s type theorem,

I1,(F) = E[F(x,)| Y]
= EO[AIF(xl)IYl]
EO[AIIYI]

o,(F)
=-—— Ssay,
o
where o,(F) = E,[A, F (x,)|Y,] is an unnormalized conditional distribution of F(x)).

We first obtain a semimartingale expression for ¢,(1). Using the Ito differentiation rule:

dA, = h(x,)A,dy,.
That is,

I
A,=1 +f h(x,)4, dy,

0

)
so 4, is a (F,, P,)-martingale. Consequently, /f,=E0[A,]Y,] is a Y,-martingale so there is some
Y.-predictable process y,, such that

t
A,=l+f 75 dy,.

(10)
0
To determine y, consider, using equation (9),

! t t
xm=JAA»+fonmmn+jAma»m
0 0 0

Conditioning on Y, under measure Py, we have

L~
EO[ylAllYl] =y A, = " A.th(x:)ds +Mr|’

(Im
Jv
where M] is a (Y,, P,)-martingale. However, using equation (10),
“ 3 4 . !
y,A,=j m,dyﬂj A,dys+f 75 ds
0 0 0 )
=J v, ds + M2, (12) °
0 *
%
gﬁ;
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Again, the decompositions (11) and (12) must be the same, so

Mi=M;
and

%= Ah(x) = B[Ah(x)|Y.)

Using Baye’s rule again, we see that

¥ = AL (h(x,).
Therefore,

A=1+ J’A‘,n,(h(xa) ay,. (13)
0

(Note " denotes conditioning under measure P,, while IT denotes conditioning under the original
measure P.) Now equation (13) has the unique solution

A= epr' IL(h) dy, — % J I1,(h)? ds]
0 0
=0,(1).

Recall ¢,(F) = a,(I1,(F). Forming the product of equations (8) and (13) therefore, and using the
Ito rule, we have the following result:

Theorem 2. o, (F) satisfies the “Zakai equation”,

0,(F) = 0a(F) + J o(F)ds + j o,(hF) dy,,
0 0

with initial condition

(14)

0o(F) =T1o(F) = E[F(x,)}.
This equation is linear in ¢ and is diiven by the observation process y. There is a one-to-one

correspondence between solutions of the Zakai equation and solutions of the nonlinear filtering

equation (8): whenever ¢,(F) satisfies equation (14), then ¢,(F)/s,(1) satisfies equation (8), and
whenever IT,(F) satisfies equation (8),

n,(F )epr: I.(h) dy, — % Ll I1,(h)? ds]

satisfies equation (13).

5. EXAMPLE

Suppose the state of the system under investigation is described by the following logistic-type
equation:

dN, = AN,(1 —aN,) dt + ¢ dw,.

That is, N satisfies the usual logistic-type equation with a small amount of noise represented by
¢ dw.

The observation process will be of the form

dy,=kN,dt +dB,.

- R o | mrmmm—————
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Again, if noise were not present in the observation process we would have

dy,

=k~
N, =k o

so that N, could be determined from the rate of growth of the observation process. Write
IL(N) = E[N,|Y.), so the innovations process is

v, =y,—J kY1,(N)ds.
Q

Suppose the observation noise B and state, or signal, noise w are independent. Then equation (8)
for the filtered estimate IT1,(N) gives

IT,(N,) = [, (N,) + J: IL(AN,(1—aN,))ds + k J: (T, (N?) = TL,(N,)®) dv,.
Equation (13) for the unnormalized filtered estimate ¢,(N) gives
a,(N,) = ITy(N,) + Ll o, (AN,(1 —aN,))ds + k Ll a,(N?) dy,.
Again consider a C? function F so that, using the Ito rule,
F(N,) = F(N,) + J: AF(N,)ds +¢ L' Fy(N,) dw,.
Here,
AF(N,)=AN,(1 — aN,)Fy(N,) + % Fun(N,).
Therefore, equation (8) gives
IL(F)=T1,(F) + J: IL(AF)ds +k L' [TL(N,F(N,)) — TN (F(N )] dv,.

If I, is given by a conditional density j, then

H,(F)=J F(x)p(t, x,y) dx.

R

Consequently, j is given by the equation

1 t
plt, %, y) = p(0, X,y)+f A*p(s,x,y)ds +k J B(s, %, y)(x — X) dv..
0 0

Here,
2 9%p(x)
2 ox?

A% () = = o ({1 ~ ) ()] +

is the adjoint of 4. This equation is not linear in p because

X, = J xp(s, x, y) ds.
R
However, if we consider the related unnormalized conditional density g, given by

g(t, x) = A,p(t, x),
then

a,(F) =J F(x)q(t, x) ds.
R
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Furthermore, ¢ is given by the linear equation

! 1]
q(t,x)=p(0, x, ) +f A*q(s, x)ds +k J xq(s, x)dy,,
0 0

which has y as input.
Finally, let us consider again the Zakai equation for ¢ (F):

0,(F) = 6,(F) + J "0, (AF)ds + k Jf' a,(N,F(N,)) dy,.

0 0

In terms of Stratonovich integrals this is

) k {
0‘,(F) = JO(F) + f at(AF(Ns) - '5 N.aF(Ns)) ds + k J U:(]VsF(N:)) ° d}’;-
0 b 0
Consider the following operators defined on functions F(N):

L(t)F(N) = AF(N) - % N?F(N)

' = IN(1 —aN)g—;Jrfz-'g;—%w(N),
1 F(N) = F(N)exp(Ny,)
and
fi ' F(N) = F(N)exp(—Ny,).
Writing A(N) for AN(1 — aN), see that
U 0w VR =5 5 809 = 3 [ S5 a5 [,

so u, L()u; " is a second-order operator.
If we consider N, as the solution of the system

N,=N,+ J [AN,) = 3p)ds + ow,
0

and consider the expectation, given Y,, of

S ‘fey? - ko,
F(NJexpy | | === AWy, == Ni ids,
0

v(F) = E(F(N,)exp{ f !:5—23— - AN,)p, ~ % Ef] ds}' Y,),
) “

we have, writing

that

v(F) = v(F) + f V(L) F(N,) ds.

0

If we now calculate v,(y, F), we have

v, F) = vo(F) + f, v(p, L)) (u F)ds +k j' Vs (i, (N, F(N))) = dy,.
0 0

")

That is, the solution of the Zakai equation is given by

. ~ I¢ly? _ k -]
vi(u F) = E(GXP(N,}’,)F (Nl)exp{f [——2—‘ ~A(N)y, — 3 Nt J dS}

0

MCM 1368
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10 R. J. ELLioTT

The advantage of this expression is that it involves no stochastic integrals. The observation
trajectory y appears just as a parameter. Also, the operator yu, L(f)u;" differs from L(¢) only by
terms of less than second order. For details of the method in this section see Ref. [5].
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Using a perturbation of the rate of a Poisson process, and an inverse time change, an
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Integration by Parts for Poisson Processes

1. Introduction.

In his paper [3] on the Malliavin Calculus Bismut obtains an integration by parts
form 'a for a diffusion by considering a small perturbation of the trajectories and then
comyensa.ing for this by using a Girsanov change of measure. That is, suppose { denotes
the original trajectory and £° the perturbation. Let E (resp. E¢) denote expectation with
respect to the original measure (resp. the measure after the Girsanov transformation).

Then for any bounded, differentiable function c, it is the case that

E[c()] = B°[c(£°))- (1.1)

The left side of this equation is independent of ¢ and Bismut obtains his integration by
parts formula by differentiating in ¢ and putting ¢ = 0. Integration by parts formulae
for Markov jump processes have been obtained by Bass and Cranston [1], and Bichteler,
Gravereaux and Jacod [2]. Again, the variation of the trajectories considered by these
authors consists of perturbing the size of the jumps.

A Poisson process is a counting process, and all jumps are of unit size. Consequently,
a perturbation of the trajectories of the kind considered in [1] and [2] does not make
sense. Instead we consider below a Girsanov change of measure which alters the rate of
the Poisson process by a small amount. This is then compensated by considering a time
change of the process under the new measure. An identity analogous to (1.1) is obtained
and the integration by parts formula follows by differentiating with respect to a parameter

¢ and putting € = 0. The case where the function depends only on finitely many jumps is




discussed first, and the general case, for a functional of the Poisson process over the time
interval [0, 1], is then deduced.

There is a close relation between integration by parts formulae and martingale repre-
sentation results. It is well known that any uniformly integrable martingale on the sigma
fields generated by a Poisson process can be represented as a stochastic integral with re-
spect to the associated martingale. The integrand can be obtained by considering one
jump at a time (though the precise form given in equation (2.6) does not appear to be
in the literature). What is interesting is that the integration by parts method gives an
alternative expression for this integrand, which does involve a derivative of the functional
of the process. The equality of these two expressions is verified in the appendix when
the functional depends on finitely many jump times. This expression for the integrand is

similar to that obtained by Clark [5] for functionals of Brownian motion.

2. Martingale Representation and Time Change.
Let N be a Poisson process on (£, F,(F:), P) with jump times Ty,...,Ty,.... We
shall write Ty = 0. Let G(T3,...,Ty,...) be an integrable function of Ty,...,T,....

Consider the martingale M defined by:

M := E[G(Ty,..., T,...) | Fi). (2.1)

For n > 1, write

e"—i(Tn) = MTn - MTn—l

= E[G | Fr,) - E[G | Fr...). (2.2)




From Theorem T9, Chapter 3 of [4], the martingale M defined by (2.1) has the

representation:
M= B6]+ [ 0.d0, 23)
where Q¢ = Ny — ¢,
s =g'(s)
= fi(s = T}) — =T / : Fiu)e"du (2.4)
on {T; < s < Tiy1}, and

fis) = EMy Ty, Ty Tipa =Ty = 5]

Since Fr, = o{Ty,...,T:}, Ti+1 — T; is independent of T,...,T;, and exponentially

distributed, so

00
E[I{T‘;+1>3}MT.-+1 ‘ .7:7*.] = / I{u+7‘.~2a}E[M’I’.'+1 | Ty, Iy T — T = u]e"“du
0

o0

= /( Fi(u)e " du. (2.5)

+—T;)VO

From (2.4) and (2.5), we have
¢'(s) = E[G|Th,...,T;, Tig1 = s}~ e " ElI1,,5.G | Fr]. (2.6)
From (2.5)
My, = E[Mr,, | Fr]

= /(;oof"(u)e""du. (2.7)
3




Also, £' can be written as

€(s) = fi(s - T:) - Mr,. (2.8)

Using (2.4), (2.7) and (2.8), we have

g'(s) = £i(s) + / £(u)e* " du. (2.9)

Throughout the rest of this paper we let {u,, t > 0} be a real predictable process
satisfying:
(1) {us, t 2 0} is positive and a.s. bounded, |us| < B a.s. say.
(i) There exists a bounded interval, say, [0, 8], such that u,(w) =01f s ¢ [0,8)], a.s.

For £ > 0, consider the martingale:
t
X = / eu,dQ@,
0

4
= ) eu,AN, - / €u,ds. (2.10)
0

0<s<t

Define the family of exponentials

AS := exp(X, — %(XC,XC)t) I] @ +ax,)eax.
0<s<t

t
= II (1 +eu,AN,)exp(—/ eu,ds). (2.11)
0<s<t 0
Then {A{, t > 0} satisfies the equation:
t
Af =1 +/ As_dX,
0

at
=1+ / A% _eu,dQ, (2.12)
0

and {Af, t > 0} is a martingale. (See [6].)




LEMMA 2.1. {A§, t > 0} is a uniformly integrable martingale. Hence A, exists and a

new probability measure P¢ can be defined by

dpe¢
dP

= A%,

Proof. It suffices to show that the martingale {A§, f > 0} is square integrable.

Recall u vanishes outside the interval [0,8] and |u,| < B a.s. By (2.12) and It&’s rule,

t
(AS) =142 / Adhs+ 3 (AS_cu,AN,)?
0 0<a<t

t t t
—142 / AZ_dAS + / (A%_Y2e22dQ), + / (AS_Y2e?ulds.
0 0 0
For 0 <t<b,
‘ by ¢
BIALY) =1+ | BI(ASetudlas
0
t
<1+€2B / E[(A%)?)ds.
0
So by Gronwall’s inequality,
E[(A$)’] < exp(e®Bt)
< exp(e?B?b) 0<t<b

Af is contant for ¢ > b. Hence the martingale {A{, ¢ > 0} is square integrable.

A%, > 0as. and E[AS ]| =1 50 we can define a new probability measure P by putting

dpe
dP

= A%,
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Then the process {Qf} defined by
t
Q¢ := Ny — / (1+ €u,)ds
0

is an (F;) martingale under P¢ (see [7}).
Now define

Pe(t) := /(; (14 eu,)ds. (2.13)

Let ¢.(t) = 71(¢). Then .(¢.(t)) =1t so

t
1
()= | — ds. 2.14
¢ () ‘/0’ 1+€u'¢'¢(3) ’ ( )

If we let F§ = Fy,(1), then from Theorem T16, Chapter II of [4], the process {N{, t >
0} defined by:

N{ = Ny, ) (2.15)

is a Poisson process on (£, F, (F¢), P¢).

3. Integration by Parts.

Suppose G is a function of the first n jump times T3,...,T, of a Poisson process NN.
Since @e(t) = 7 1(¢), if T; is the ¢-th jump time of {N;}, then ¢,.(T;) is the i-th jump time of
the process { Ny, (1)}. Changing the rate of the point process by a Girsanov transformation,

and then changing the time scale of the process, we have the following result:

THEOREM 3.1. Let G(Th,...,T,) be bounded with bounded first partial derivatives.

Then

E[(/:o wdQ))G(T,, .., Ta) = -E[\; %G(T,,...,Tn) /OT wds].  (31)




Proof. By the results in Section 2, because Ny, (v) is a Poisson process under P with

jump times ¢.(T;); consequently

E[G(Th,. ooy In)] = EX{G(4e(Th), - - -y $e(T))]

= E[ALG(8e(T1), - - - s 6c(Tn))] (3.2)

where E¢[ | denotes that expectation is taken with respect to P¢. Differentiating (3.2)

with respect to ¢, and then setting € = 0, we get:

d
E[Agolg=o ’d‘g G(ée(Ti)’ ceey ¢C(Tn))|¢=o}

+ E[(-;—s Ag,o)I _ G(qSE(Tl),...,¢5(Tn))l.=°] =0. (3.3)

From (2.12) and the definition of A,

dAS, *
de leso —/; usdQs-

Noting the definition of ¢,, (3.3) becomes (3.1) and the proof is complete. 0O

Remark 3.2. Consider a function H of the form H(T) A 1,...,T, A1) where H is
bounded and has bounded first derivatives. Applying Theorem 3.1 to G(Th,...,Tn) =
H(Ty AL,...,T, A1) and noting that

a a
'8"{; G(Tl,...,Tn)-'-'- ’a—t: H(Tl Al,...,Tn/\l)IT'-Sl,

we have the following:

COROLLARY 3.3. IfH(Ty A1,...,T, A1) is bounded and has bounded first derivatives,

then

E[(]Zl 4,dQu ) H(Ti AL,..., Ta AD)]

T;
= —E[z &TH(T’ Al,...,Tn/\l)A u,dSIT.-Sl]- (3.4)
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Remark 3.4. Recall the martingale representation (2.3) and (2.4), or

T,

G(Ts,...,Ta) = E[G] + / " 9ed0s, (3.5)

0

where

gs=¢"s) for Tioy<s<T.

If we substitute (3.5) into the left hand side of (3.1), we get

E[( /0 wu,dQ,) (E[G}+/0 " 9:4Qu ) | =E[ /0 " u,g,ds] =E[ /0 ” u,g,ds] (3.6)

where g, =0 for s > T},.

Also, if we consider the measure y defined by
=, 9
udt) = =G(Ty,..., Ta)br (d).

i=1

Then the right hand side of (3.1) can be written
n a 7"'
-F —G(T1,..., T / U ds

= —-E[/:o /Otu,dsp(dt)]

= -E[ Aoo p[s,oo)u,ds]

= -E[j{ Z:Inz,g—g(Tl,...,T,,)u,ds]. (3.7)

i==1

n
Let Cy = Y I3 3&(T1,...,Tn). Then there exists a predictable projecti

nemsenmnbe nn

i 'l
prgoivivil v
Sl

of C, such that for each s,

Cr=E[C, | Fo] e
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Also {or any predictable process {u,, s > 0},
Eu,C,] = E[u,E[C, | F,-]]
= E[u,C:]. (38)

Let H be the family of subsets of [0,00) x Q of the form {0} X F; and (s, t] X F', where
Fy € Fy and F € F, for s < t. Recall that the predictable o-field is generated by H.
Taking u = I{o}xF, OF u = I(, qxF, then u satisfies the hypothesis in Section 2, so (3.6),
(3.7) and (3.8) hold for these u. Also because of (3.8), on comparing (3.6) and (3.7), we

have

E[/oo u,g,ds] = —-E[/w u,C:ds]
0 0

holds for all u which are indicators of sets in M. Since H generates the predictable o-field

and the processes g and C™* are predictable, therefore we have proved the following result:

PROPOSITION 3.5.
i oG
g0 = —E[;quz,-ét—:(Tl,....Tn) |72l as. (3.9)

Now suppose H(T} A1,...,T, A1) is bounded with bounded first partial derivatives.

From Section 2, H has the representation:
TaNl
H(TyAL,...,Ta A1) = E[H] + / 0,40, (3.10)
0

where g, = ¢* "} (s) for Ti. 1 A1 < s < T;A L

An argument similar to the above shows that

n

T OH
gs=—E[2‘;I,ST..51-5{;(T1Al,...,Tn/\l)If_. a.s. (3.11)
9
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The form of ¢ given in Section 2 and that given in (3.9) are at first sight rather different.
A direct proof of their equality is sketched in the Appendix. Next we have the following

integration by parts formula:

THEOREM 3.6. Suppose G = G(T1A1,...,TaAl,...) is a bounded function and its first

partial derivatives are all bounded by a constant K > 0. Then

E[(/Olu,dQ,>G(T1 A1,...,T,,A1,...)]

= —ZE[——G(Tl Al,...,Tn N 1,)/ U,dSIT}<1]. (312)
Bt; A <

=1

Proof. First note that for each M > 0, the partial sum

M M
Y Ellngl=) P(Ty 2i) < 47,
=1 =1

so that by hypothesis, the right hand side of (3.12) is finite. For each n > 1, define
HYTy,...,T)=E[G(Th AY,....,Ta AL,...) | Fr,).
Then

Hn(Tl,...,Tn)=E[G(T1/\1,...,Tn/\1,(Tn+Sn+1)/\1,...,
(T + Snt1 +-+ + Snpi) AL, ) | ]
= ES[G(TyALy...,To AL (Ts + Sns1) AL,

(Tn+ Sng1 + -+ Sngi) AL, (3.13)

10
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where Sk = T — Tx_; for k > 1, and the last expectation ES in (3.13) is taken only over

the random variables Sqy1,...,8n44,..., and the Ty,..., T, are given. From (3.1),

E[(/ooou,dQ)H"(Tl, __"f:E[aH"(TI, T)/ uyds]

[6H“

Ta
(Ty,...,Tn) / u,ds 10

And from (3.13},

aHﬂ(Tl, ,Tn) =ES[6%G(T1 AL T ANL(T, +Sn+l)/\1,"')}
= Es[ia%cm AL T AL (Tn+ Sagr) A 1,---)IT.-5_1]
= iE[&Q{G(TI ALy, T AL (Ta + Sn1) AL, ) IR lan}-
Hence

n T
[aH (Ty,...,T, )/ u,ds

-5[[" udsZE[—(Txl\l WTa AL Mg | P
-0 asn — oo (3.15)

by the hypotheses on {u,} and G.

Alsofor1<i<n-1,

[BHR(TI, T)Aﬂu,dS]

1l

r d (e
E[El-aTiG(TlAl,...,T,,/\l,...)IT,.Sl |an]/0 uyds]

o] T
=E[——G(T1Al,...,T,,/\l,...)/ udslrci]. (3.16)
6t,' 0

11
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Letting n — 0o in (3.14), because of (3.15) and (3.16), we obtain (3.12). O

We conclude with the following theorcm:
THEORFM 3.7. Suppose M is the right continuous martingale
M;=E[G(T) AL,...To AL,..) | F).
Then
M= B+ [ 0.dQ
where

o G
go = ~E[ZI,57;51-6T(T1 AL,...,TaAl,...)]| f_] as. (3.17)
=1 '

Proof. The proof is similar to the one for Proposition 3.5.

4. Appendix.

We now give a direct proof that the integrands g obtained in sections 2 and 3 are
equal.

The idea is to first establish the equivalence on {t < T1} and then to use this to
establish the equivalence on {T;—; <t < T;} for i > 1 without any more calculation. First

we need a preprratory lemma. Given a bounded measurable function R(z,,...,z,) define
F]({')(yh""yﬂ; xl)"'azi'-]) = R(xl,'-' 1y Ti~-1y Y +$i—l)-'-ayn + xi-—l>'

Notice for later use thag

aF) i s
By}j = él)tlay,- for j > 1. (4.1)

Finally, for i fixed, let 1~‘, = T; — T~ for j > i and notice that (Tg, cen ,’ﬁ,) has the same
probability distribution as (T,...,Th=it1).

12
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LEMMA 4.1. If(Ty,...,Ty) are the successive jump times of a Poisson process, then

(a)

E[R(Ty, ., Ta) | Frio)) = BIFR (T s 215 3im sy e yaTroion)

(b)
E[R(T\,...,Ta) | Ty iy, Ti =1
= E[Fg)(f’,-,. s Tng Z1ye ey @ict) | Ty =1 = 30 '(zx,...,x;_l)r-(Tl,...,T.'..x)
(c)

E[R(Ty,...,Th) | f‘]h{’l‘s

~15t<Ty}

= 11(T'._15,<1~;;E[F}(2t)(Tiw vy Iny 24, yxi—l) I T > t—xi"lll(z,,...,z;_1)=(T;,...,T.-_1)‘

The proof of this lemma is elementary and relies mainly on the independence of
(f’;,...,f’n) from T3,...,T;—;, and the equality F, N {Ti—y <t < T3} = Fr,N{Ti-; £t <
T;}; see [4], Chapter 3, Section 1.

Now we are ready for the proof. Note first that F, = F,_, since the sigma algebras

are compiete.

Step 1 We show equivalence on {T} > t}. A direct calculation and an integration

by parts shows that

1{Tl>¢}(E[G(T1, eee ,Tn) I T1 = t] - etE[l{let}G(Tl, [P ,Tn)]

e
=1{T1>t}E[ &;(Tl,--')Tn)ITl >t].
1

13
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By part (c) of the lemma and by using the facts that 1;7,5¢) is F; measurable and that

Lr> {120 = 1{1y>1) almost sure for j > 1, we find that this last expression equals

e oG
1{’1‘,>t}E[Zl{7}Zt}§;(Tb- ey Tn) | ft].
1

This completes Step 1.
Step 2. We prove the equivalence on {T;_; <t < T;}. First use (a) and (b} of the

Lemma to show that

1{7'-'_1St<T.‘} (E[G(Tlr .. 7Tn) ‘Tl:‘ '°7Ti-la T! = t] - et_T"_lEll{Tu>t}G l }-T‘-l]>
= Ut <ol Fisinyy (BFS T Ty 21y s2ica) | B =t = 2]

_et—ﬂ—lE[Fg)(ﬁ, e ,T’n; T1yevey xi—l)]) l(zly--':xi—l)=(Tl,---,Ti..l).

(4.2)
Now apply Step 1 at each (z1,...,zi—;) with the random vector (Ti,...,T,) replaced by
(Ti,...,Tn),a0d G(Ty, ..., Tn) replaced by FS(Ti, . .., T; 21, ..., 2i-1) and (21, ..., 2ic1)

fixed but arbitrary. Using (4.1), we find in this way that the expression in (4.2) is equal to

I{T;—xS‘<7}}E[ZF¢§Z/8u(ﬁ" .. .,fn; Z1,... ,:L‘,'_l)]

j=i

(2t zio)=(T o Timt)

But from part (c) of the Lemma, this equals

1{Tn'—1$¢<T.'}E[Zg—tg;(Tla"'aTn) ‘ ft}

j=i

n

[ oG

= Yty <eet) B| D Ymioi<ecmy 5. Ty Tn) lft}
& ;

n

[, 5 oG, - 1

sy B| 2 Wt gecny iz 3, Lo Ta) 1 )

L ;

[ 8G
=1{T‘_1S1<T‘}E 21{7}23} Et_-—(Tl,.."Tn)lft].
-j=l 7

14




The last three equalities are all elementary. This completes the proof.
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The Optimal Control of Diffusions*

Robert J. Elliott
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Edmonton, Alberta, Canada T6G 2G1

Abstract.  Using a differentiation result of Blagovescenskii and Freidlin
calculations of Bensoussan are simplified and the adjoint process identified
in a stochastic control problem in which the control enters both the drift
and diffusion coefficients. A martingale representation resuit of Elliott and
Kohlmann is then used to obtain the integrand in a stochastic integral, and
explicit forward and backward equations satisfied by the adjoint process are
derived.

1. Introduction

The adjoint process in stochastic control problems has been investigated in several
papers. For example, see the works of Bismut [4], [5], Davis and Varaiya [7],
Haussmann, [13]-[15], Kushner [16], and the previous papers by Baras et al. { 1],
and Elliott.and Kohlman [11], [12]. In most of these papers the control variable
enters only the drift term. However, in an interesting paper [2], Bensoussan
considers the case where the control is also present in the diffusion coefficient. By
obtaining the Gateaux derivative of the cost function the equation satisfied by the
adjoint process is derived. Hewever, a martingale representation result is used and
this equation involves an unknown integrand. The contributions of this paper are
that, by using results of Blagovescenskii and Freidlin [3] on the differentiability of
- solutions of stochastic differential equations that depend on a parameter, the

* This research was partially supported by NSERC under Grant A7964, the U.S. Air Force Uifice
: of Scientific Rescarch under Contract AFOSR-86-0332, and the U.S. Army Rescarch Office under
z Contract DAAL03-87-K-~0102.
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230 R. J. Elliott

calculations of Bensoussan can be simplified, and, by applying the expressions
obtained by Elliott and Kohlmann in [9] and [10] for the integrand in a stochastic
integrai, explicit forward and backward equations for the adjoint process are
obtained when the optimal control is Markov. In particular, the backward
equation is a nonstochastic system of parabolic partial differential equations of a
novel form, though it is probably related to the equation obtained in the recent
paper by Davis and Spathopoulos [6].

2. Stochastic Dynamics

Assume the state of the system 1s described by the following equation:

dx, = f(t, x,, w) dt + gt, x,, Wy dw,, xR, 0<i<T Q2.n
The control variable u will take values in a compact, convex subset U of some
Euclidean space R*. We assume:

Al. xge R%is given.

A2. [:[0, T] x R? x U — R?is continuous, and continuously differentiable with
respect to x, u.

A3. g:[0, T] x R* x U~ R*® R"is a continuous matrix-valued function, which
is outinuously differentiable with respect to x, u. The columns of g are denoted by
g®fork=1,...,n
Ad4. There is a constant K such that

(4 1xD) e X wl + LA x ) + 143 x, 0] S K,

tg(t, x, W)l + 19, {t, x, W)| + lg.(t.x, v)| < K.

A5. w=(w',..., w") is an n-dimensiona! Brownian motion on a probability
space (&, F. P\,

The right continuous, complete filtration generated by w is denoted by {F,},
0<t<T

Notation 2.1.  Write L3[0, T] = {v = v(z, w) € L%Q x [0, T1; dP x dr; R¥): such
that, for a.c. t, u(t, ) € L* (, F; P, R¥)}.

Definition 2.2. The set of admissible controls is the set
U={ve L0, T]: u(t)e U ac. as.}.

Then U is a closed, covex subset of L2[0, T].

T A T R S i R . B - - - —




The Optimal Control of Diffusions 231

Remark 2.3, For each u e U there is, therefore, a unique strong solution of (2.1).
We write x (x) if xe R%, 0 < s <t £ T, for the solution trajectory given by

X5 X) = x + J.‘ SO x5 (x) up) dr + Jﬂ g, x5, (x), u,) dw,. 22

5

Because u,(w) depends only on ¢t and w, the result of Blagovenscenskii and
Freidlin [3] extends to this situation, so the Jacobian dx" (x)/0x = D, exists and
is the solution of

t n t
Bo= 14 [ St e 3 [ g8, x2, 01008 vt 2
s k=14Js
Here I is the d x d identity matrix. In fact, if the coefficients f and g are C* the map
x = x¥ (x)is C¥1,
Consider the matrix process H defined by

HE, =1 - j H:.,<f,(r, )~ T g8 X (), u,>2) ar
s k=1

-2 f H: ,g¥(r, X2 (x), u,) dw}. (2.4)
k=1 s

Using the Ito rule we see d(HY DY) =0, and HY D%, =1 so
HS, = (D:,r)- g

Write | x*(Xo) |, = Supo<s<(1X5, (Xo)]. Then, as in Lemma 2.1 of [15], for any
p, 1 £ p < o0, using Gronwall’s and Jensen’s inequalities

a.s. for some constant C. Therefore, using Burkholder’s inequality and hypothesis
Ad,

T
Ix*(xo)ll 7 < C<1 + 1%l + f g(r, xg,.(xo)s 1¢,) dw}

0

Ix“(x)ll ¢ isinLP  for 1< p<oo.

~ Write
IDfr = sup |Dyl,
0<ssT
IH*r = sup |Hj .
0sssT

Then, because /, and g, are bounded, an application of Gronwall’s, Jensen’s, and
Burkholder’s inequalities again implies

ID*y and | H"Yj; areinLP, 1<p<oo.
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232 R. J. Elliott

Cost 2.4. We assume there is a cost associated with the process, made up of a
terminal cost and a running cost,

T
cstr (i) + [ (), )
(1]
We assume:
A6, [c(X)] = e + e < K(1 + [x]9) for some q < co.

A7. h:[0, T] x R? x U — R is Borel measurable and continuously differentiable
in (x, u).

Furthermore

lhx(ta x) ll)’ S Cl(l + ]XD,
1h(t, x, W)} < C,(1 + |x)).

The expected cost if a control u € U is used is, therefore,

T
J(ll) = E[C(XB T (xo)) + J h()‘, x‘(‘),r(xo)’ ur) dr]
0

We assume there is an optimal control u* € U, so that
J(u*) < J(u)

for all other ue U.

Notation 2.5. We write x* for x*', D¥ , for D}, ,, etc.

3. Differentiability

Assume u* e U is an optimal control. Consider any other control v € U. Then for
#e(0,1]

uy(t) = u*(t) + 6(v(z) — u*(t)) e U.
Now
J(1g) = J(u*). 3.1

If the Gateaux derivative J'(u*) of J, as a functional on the Hilbert space LZ[0, T,
is well defined, differentiating (3.1) in 8 implies
(™). olt) — ¥ (D> > 0

AY

for allve U.

Pty s — . - e -
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Lemma 3.1. Assume veU is such that uf =u* + 0ve U for 0¢[0,0]. Write

x§.(xo) for the trajectory associated with u}. Then z, = 0x% (x0)/081y=¢ exists a.s.
and is the unique solution of the equation

Z, = Jt(ﬂ(r, x§.(xo), wF)z, + f.(r, x§ (xo), u¥,) dr
0

n t
+ 3 f (000, X5 (xo), 1)z, + g, & (xo), uD)o,) dw. 32)
1=1 40
Proof.

t
x?). x(xo) = xO + J. f(ry x%.r(xo): u:'k+ Gv.-) dr
0
n t
+ 3 J' g9r, x3.,(xo), u* + Ov,) dw!
=1 JO
and the result follows from the theorem of Blagovescenskii and Freidlin [3] on the

differentiability of solutions of stochastic partial differential equations which
depend on a parameter. O

Comparing (3.2) for z and (2.3) for D§ , = 0x} ,/0x, we have the following
result by variation of constants:

Lemma 3.2. Write

no_,=f (D) I dr + 5 f(Dz.,r‘gw(r)v, v
(4] =1 0

- i, J:(D*o)— tg¥(rg(r)v, dr. (3.3)
Then z, = D¥ 1y,
: Proof. By differentiating, we see the product D, , satisfies (3.2). ]
Lemma 3.3.
de((l)lE,") reo = E[cx(x?;.r (xoDDo, 0.7
05050, D s 580 |
w 34)
Proof

T
Jud = E[c(x‘(’” (xo) + J h(r, x3_ (xo), uF(r)) dr].

0

A T TR r— S
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The result of Lemma 3.1 and [3] justifies the differentiation in 0 giving

* T
L O KT MY TS |

di o= . Jo
Substituting z, = D§ 1., (3.4) follows. O

Notation 3.4. Consider the right continuous version of the square integrable
martingale

T
M= E[cx(xazr(xonoar + f h{r, X8 (o), tf,*)Dé‘.,drIF.:I-
0

It is known (see, for example, [8]) that M, has a representation as a stochastic
integral

T n
M, = E[cx(xg‘ (x)DE ¢+ + J h(r)D§ , dr] + z

0 i=1

f yi dw, (3.5)

s

where the y' are predictable processes such that

lz[ LT (7H? dr:] < 0.

We determine the 3* below, but first we introduce some more notation. Write

4
& =M, ~ j h(r)DF., dr.

Definition 3.5. The adjoint variable is the process defined by
ps = ¢LD§ )7
Theorem 3.6.

dJ(ur T noeTo T
2l EU P f(s)oeds = 3. f pg()9 (s, ds + f hy(s)v, ds
9=0 0 i=1 0 0

do

n T
+ 2 J YWD§.) " g s), ds]. (3.6)
i=1 4]

Proof.  First note that

T
Ertlor = L EDE )~ Yl ds

rT n T
£D8.) g Do, dwi — 3 f £D3.)" 1g0(5)g e, ds
(4] i=1 0

[NgE

4

1]
-
[

rT T
Vilo.o dh — j ho(5)D8, 0.« ds
0 0

+
.rvja

]
e
[3

n rT
+ 3 | WDE ) gW(s)v, ds. 3.7

i={ JO
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Also

dJ(ug)

T T
70 lo=0 = E[fr’lo.r + J h(s)D§, Mo, s ds + J‘

0 0

hy(s)v, ds:l. (3.8)

substituting (3.7) in (3.8) and using the definition of p;, the result follows. 0O

. Martingale Representation

Under certain conditions the minimum cost attainable under the stochastic open-
oop controls is equal to the minimum cost attainable under Markov feedback
>ontrols of the form u(s, & (x,)). See, for example, [4] and [13]. If uy, is a Markov
sontrol, with a corresponding, possibly weak, solution trajectory &, then uy, can
se considered as a stochastic open-loop control u,, (w) by setting

(@) = uy(s, E(xo, W)).

This means the control in effect “foliows™ its original trajectory £ rather than any
new trajectory. The contrel uy is, therefore, similar to the adjoint strategies
ntroduced by Krylov. The peint of considering the open-loop control uy is that
when we consider variations in the state trajectory &, and derivatives of the map
x - &, (x), the control does not react, and so we do not introduce derivatives in the
u variable.

We assume in this section that the optimal stochastic open-loop control u* is
Markov. We can then determine the integrands 7' in (3.5).

Lemmadl. For1 £ign
. (op .
vy = <a§ g5 + Py yi:’(s))Dé‘.s-

Proof. Consider a stochastic system with components x§ (x,), D¢ ,, and Yp ,,
where

o= [ et o o0,
0
Now
AT
p«Dg.r + Yo = M, = E[cx(x?," T(XO))DS.T + J hx(")D(’;.r drlF,il.
0

Writing x = x} (xo), D = D§.,, ¥ = ¥o., by the Markov property this expectation is
the same as

T
E[ c(xFr(x DD, 7D + Jf h, (r)D}¥,drD + yix, v, 1):|| = V(t, x. v. D).
L ¢

From the left-hand side this also equals p,(x)D + y. The martingale representation
result of Elliott and Kohlmann [9], [10] follows from the Ito formula, using the

SRR T T T LT O R e N N o= -
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differentiability of the solutions of stochastic differential equations as functions of
their initial conditions, and equating the bounded variation terms to zero.

Therefore,
T n t
E[cx1)+ J h.D dr]-%- y Jy;dw;
0 4 i=1 Jo

n t n 1
V(0, x0, 0, 1) + 3 j gD, , dwy + 3 J p(gdrDE., dw,.
=1 JO =1

[4]
.0
That is, 3 = (p(Ng®(r) + p(rg@))HDE .. g

M,

Remarks 4.2, Substituting in (3.6) we have
dJ(ud)

T n T
= EU oSS ds + 3 f P<(8)gP()gP(s)v, ds
9=0 0 1=

0
T
+ J h,(s)v, ds].
0

Returning to the perturbation

u(t) = u*(1) + 0(c(t) — u*(1))
of the optimal control, we have

dJ(uy)

dg
That is,

= 0.

0 =0

T n T
fU P SS) g ~ uF)yds + ) J ()9 (s)gP(s ), — u¥) ds
(4] 1=1

0
T

+ [ hy(s)(v, — u¥) ds] =0 4.2)

vo

for all ve U. Define the Hamiltonian by

H(x, v, 1, p(t)) = p()f (¢, x, v) + }E P(0gV, X191, x, 0) + h(t, x, v).

1=

(4.3)

Then, because (4.2) is true ror all v € U, we have the following resuit:

Theorem 4.3. If u* is the optimai control, thon a.e. t and a.s. w

-~

JcH
}};(X(’;.:(XO)' ur 4, {0) (v~ uf) =0

Jorallve U,

JR e i et - =
S




- The Optimal Control of Diffusions

237

Finally we derive the equations satisfied by p. We first show p satisfies a

forward stochastic partial differential cquation.
Theorem 4.4,
t
p= B e oD + [ nxs. oo, d
11 ‘
- [ nnsg e ar - [ e sz uny ar
0 0
]
+ f px(r)g(r, '\'(’;,r(xo), ll:) dW,
]

n '
= 2 | pdrIg® (o xE(xo), r)gAr, x3,(Xo), u¥) dr.
=1 JO

Proof.  From (4.1)

1“4: = png.l + Yo.:
T
= E[cx(xa‘_ T(xo))Dz‘;_ T+ f hx(r)Dg., dr]
0
n I 4 n 1
+ 3 | pwDg, vt + 3 f PG, dwi.
i=1 () i=1J0

Multiplying by H§ = (D§ )", whose equation is given by (2.4), we see
P = (p.D§ YHE

= po —~ f m(fx(r, XA, uh) = ¥ g0, xx (%), u,*)‘*) dr
0 i=1

n { 4
= ¥ | a0, x50, ) ot — f e, 33,00, u?) dr
1=} 0 0

R T

n d no ot
+ 3 | pdog0ydus + 3 J P9 dwi
i={ Jo i=1Jo

w'\t

v A

= 2 | g g dr —~ Y f P.gY (Ng¥(r) dr
i=1 0 i=1 0
I 1
< o — f P ) dr f bt} dr
0 0

+f P dw, - 3 f PPN dr.
1] i=1Jg

44)
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Here
(4
po = E[cx<xa‘. oDk + f halr, x8.(%o), u DE., dr]
0

and the functions f,(r), h.(r), g(r), g@%(r) are cvaluated at the argument

(r, Xg.r(xo)’ u;k) D
Remarks 4.5. Although (4.4) is a forward stochastic partial differential equation
for p it does not appear to have a unique solution; certainly giving any (constant)
initial condition does not determine a corresponding vector function selution p.

We now show p is given by a backward, nonstochastic, parabolic system of partial
differential equations which, under the given conditions, has a unique solution.

Theorem 4.6. p is the solution of the backward parabolic system of partial
differential equations

d z . ;
S+ PAOSO) + 1) + POLO +3 Y P09 ® g7 = 0
i=1
with terminal condition

Pr= CX(X).

Proof. Consider again the function
M! = V(ta X, ys D) = pl(x)D + y
of Lemma 4.1. Writing again the Ito formula we have
tov

V(t, x, y, D) = V(0, x,,0, 1) + J i

Grm e )+ 313,

ov LS '
+ 35 [A0DY, + Z =5 0°0) ® gr) dr
+ the two stochastic integral terms in (4.1). (4.5)

However, M, = V(1, x, v, D) is a martingale so, as observed in the proof of Lemma
4.1, the dr integral (that is, the bounded variation term) must be identically zero.
Therefore, the dr integrand in (4.5) must be identically zero, so

6V BV

av
Rl (” ’ LNID5, + =5 JLNIDS,, Z Er 7Y 90)® gr) =
Recall V= p(x)D + y, so

2 ) ' |
<5§ + pAOS) + ht) + POSD +4 T (g ® g("(‘))bg B
i=1

ek ot
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iD¥ | is nonsingular, so we see that p is the solution of

‘ %I_: + PO () + hy(t + p(e) L) + % Z Pe(9() ® g¥(t) = 0
i=]

with terminal condition

pr= cx(x)-' (]

5. Conclusion

Using the differentiability result of [3] the proof of Bensoussan [2] is simplified and
the adjoint process, when the control appears in the diffusion term, is obtained.
Furthermore, by applying the martingale representation result of Elliott and
Kohlmann [9], [10], explicit equations for the adjoint process are established.

Under certain conditions (see [5] and [15]), if the optimal control is Markov
we can write

T
Vs, %) = E[C(X&r(xo)) + f I, 5, (o), 1) drm]

T
- Es.x[C(X?fr(X)) . J I, 4.(), %) dr],

where x = x¥ (x,), for the optimum remaining cost. Then, at least formally, we see
p(x) is the gradient V,(s, x); 50 p, is Vi(s, x).
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MARTINGALES ASSOCIATED WITH FINITE MARKOV CHAINS
by
ROBERT J. ELLIOTT

1. Introduction.

In a recent paper, [1], Phillipe Biane introduced martingales M k associated
with the different jump ‘sizes’ of a time homogeneous, finite Markov chain and
developed homogeneous chaos expansions. It has long been known that the Kol-
mogorov equation for the probability densities of a Markov chain gives rise to a
canonical martingale M. The modest contributions of this note, are that working
with a non-homogeneous chain, we relate Biane’s martingales M* to M , calculate
the quadratic variation of M and thereby that of the M. In adaition, square field
identities are obtained for each jump size.

For 0 < ¢ < N write ¢; = (0,0,...,1,...,0)* for the i-th unit (column) vector
in RV+1, (so ey = (1,0,...,0)* etc.). Consider the (non-homogeneous) Markov
process {Xt}, t >0, defined on a probability space (2, F, P), whose state space,
without loss of generality, can be identified with the set S = {eg,ey,...,e N}
Write pf = P(X; = ¢;), 0 <i < N. We shall suppose that for some family of

matrices 4y, p; = (p?, ceey ptN )* satisfies the forward Kolmogorov equation
dp
o = A (1.1)

Ag = (a;§(¢)) is, therefore, the family of Q-matrices of the process.
It has long been known (see, for example, Liptser and Shiryayev (4], Elliott [2])
that the process t
My =X - Xy —/0 ArX,_dr (1.2)

is a martingale. (See Lemma 2.3 below.)

ACKNOWLEDGMENTS: Research partially supported by NSERC.Grant A7964,
the Air Force Office of Scientific Research United States Air Force, under contract
AFOSR-86-0332, and the U.S. Army Research Office under contract DAAL03-87-
0102.
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Solving {1.2) by ‘variation of constants’ we can immediately write

Xy = @(f,O)(XQ + /0 t(I’(O,r)"ler) (1.3)
where @ is the fundamental matrix of the generator A. Equation (1.3) is a mar-
tingale representation result which in turn gives a representation result in terms
of the M*. (By iterating this representation Biane’s homogeneous chaos expan-
sion can be obtained; this is quite explicit, in terms of matrices & and matrices
associated with A.) Functions of the chain are just given by vectors in RN+ and

in Section 4 ‘square field’ identities are obtained for each jump ‘size’.

2. Markov Chains.
Consider a Markev chain {X;}, t > 0, with state space S = {eg,...,epN}
and @-matrix generators A;. We shall make the following assumptions.

AssUMPTIONS 2.1. (i) Forall0<i{,j<Nandt>0

lai;(t)| < B (2.1)
for some bound B’; write B = B’ + 1.
(i) Forall 0 < ¢,j < N and ¢ > 0, a;5(¢) > 0if i # j and, (because 4¢ is 2
@-matrix),
aii(t) =~ ) a5i(). (2:2)
J#
The fundamental transition matrix associated with A will be denoted by

&(t,s), so with I the (N 4 1) x (N 4 1) identity matrix,

g%t"ﬁ = Atd(%s),  B(s,8) =1 (2.3)
t
and

dd(t,s) _

— = =0(hs)As, A1) =1 (2.4)

(If A; is constant ®(t,s) = exp A(t — s).)
Bounps 2.2. For a matrix C = (c;;) consider a norm |C| = max |c;;|. Then
1

)
¢, |A:] £ B. The columns of @ are probability distributions so |®(¢,5)] <1

Consider the process in state z € § at time s and write X 4(x) for its state -
at time t > s.
Then E[X; 4(z)] = Esgz[Xi] = ®(1,s)z. Write F}’ for the right continuous,%‘:
complete filtration generated by o{Xr:s < r <t} and Fto =F. ;

R

A




it o Lk

t
LEMMA 2.3. The process My = Xy — Xy —-/ ArXr_dr is an {F;} martingale,
0

Proof. Suppose 0 < s < t. Then

t
E[A/It -—MS l Fs] = E[Xt —Xs - / ArXr—dT l FS]
3
4
= E[X, - X, - / ArXrdr | X,
3
t
= 3,X‘[Xt] - Xs ‘/ ArES’X‘[Xr]dT'
L]

t
= B(t, $)Xs — X / Ar8(r,)Xsdr=0 by (2.3)
3

Therefore,

t ¢
Xt =X +/0 ArXrdr + My = X + / ArXp_dr+ My
0

where M is an {F};} martingale.

NOTATION 2.4. If z = (zg,zy,... ) € RN+1 then diag z is the matrix

.'EO 0

T1

N
LEMMA 2.5.

t t t
(M, M); = diag ‘/0 ArXr_dr-/O (diag X )Ardr —-/(; Ar(diag X,_)dr.
Proof. Recall X; € S is one of the unit vectors e;. Therefore,

Xt ® X; = diag X;. (2.5)

Now by the. differentiation rule

i
Xt ®X; = Xo ® Xp +/0 X ® (Ar.Xr_.)dr
t 14
+ /O Xr— ® dM; + /0 (ArX,_)® Xp_dr

t
" /0 dMy @ Xy + (M, M), + N,

e = SR e e e - -
P = e




where Ny is the Fy martingale
(M, M — (M, M),.
However, a simple calculation shows
Xr— ® (ArXr-) = (diag Xr—)A7

and

(ArXr_) ® Xr— = Ar(diag Xr_).

Therefore,

-t
X, ®X; = Xo® Xo+ ] (diag Xy )Aldr
0

t
+ / Ar(diag X,_)dr + (M, M); + martingale. (2.6)
0
Also, from (2.5)
t
X; ® X; = diag X; = diag X + diag /(; ArX,_dr + diag M;. (2.7)

The semimartingale decompositions (2.6) and (2.7) must be the same, so equating

the predictable terms
t t t
(M, M), =diag/ A,-X,._dr—/ (diag X,._)A;‘.dr—/ Ar(diag Xr_)dr.
0 0 0

We next note the following representation result:

LEMMA 2.6. t
X = @@,0) (XO +/0 &(r, 0)’1dM,~). (2.8)

Proof. This result follows immediatcly by ‘variation of constants’.

Tdwrve o a7
2%

REMARKS : € S can be represented by a vector

£8) = (fo(t)s-» F ()" € RIVH1

so that f(¢,X;) = f(t)* Xy = (f(t),Xs) where {, ) denotes the inner product
in RV+1,

We, therefore, have the following differentiation rule and representation result:




LEMMA 2.8. Suppose the comyonents of f(t) are differentiable in t. Then

t . t , t
£t X1) = £(0, Xo) + /O (), Xr)dr + /0 (F(r)s ArXp_)dr + /0 (F(r), dMs).
(2.9)

t
Here, /0 (f(r),dMr) is an Fy-martingale. Also,

t
0, X0) = (£, 8, 0K0) + [ (70,8, 7)d0e) (2.10)
This gives the martingale representation of f(t,X}).
REMARK 2.9. With an obvious abuse of notation, if the jump times of the

chain are Tj(w), To(w), ..., we can write down a ‘random measure’ decomposition

of Xy from (1.2) as

t
Xe =Ko+ [ 3 (es = Xr )3 81, ) () )9 — i, )
1 k

i
+ /0 S e — Xp—aix,_dr,
1

because 3 (e; — Xr_)a;x,_ = Ar—Xr—. Here, 67, (y)(dr) is the unit mass a
T (w) a.nzl, with X7, (w) = €ip(w) Gig(w)(?) is 1if ¢ = iz (w) and 0 otherwise.
That is,

4
i k
This representation would provide another means of calculating (M, M);.

3. Shift Operators.

The formulae of Section 2, particularly the martingale representations (2.8)
and {2.10), provide basic information about the Markov process X. However, if the
‘size’ of the jumps is considered some other expressions, including a homogeneous
chaos expansion, were obtained recently by Biane [1]. We wish to indicate how the
results of Biane relate to the above expressions. First we introduce some notation.

NoTATION 3.1. Write i @ j for addition mod (N +1). For X5 € § =
{eg,e1,.--,en}, say Xg=¢;, and k=1,...,N, write

k
Xs = 6¢'®k.

|
¥4 D DA R 11 4
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That is, Xg —» X } corresponds to a cyclic jump of size k in the index of the unit
vector corresponding to the state.

Suppose X;— = ¢; and Xf_ = e;, where j =1 ® k, then clearly
(X§_)*AsXs— = aji(s). (3.1)

We now wish to introduce some subsidiary matrices associated with A; =

(a;;(s)). These can best be explained by first considering the 3 x 3 case. Suppose

agp .ap1 4Q2

A= | a9 a1 012

a0 421 a21

Then

—a;0 0 a2 \
Ali=1{ a9 -azy 0 |,
0 asy —aog}

—agg a1 O

A% .= 0 —ag1 412

a9g 0

—ai2
Note that if 4 is a Q-matrix ag; + a1; + a9; =0, so Al 4 A2 =4

In general, if A5 = (a;;(s)) is an (V¥ + 1) x (N + 1} @-matrix, Ak is obtained
by forming a matrix from the k-th subdiagonal (continued as a superdiagonal),
with the negative of the column entries on the diagonal and zeros elsewhere. By

construction, AFisa @-matrix, and it is clearly related to those jumps of ‘size’ k.

As above,
N
As=Y Ak (3.2)
k=1
Also,
(XE_)* As X )(XE_ - Xo-) = AS X, (3.3)
R{e}

N

3 ((XE) AaXs ) (KE — Xoo) = AsXoo. (34)
k=1 )}
We zlso wish to introduce matrices A%, k % 0, whose off-diagonal entries

EY
3

aré the (positive) square roots of those of A¥, and whose diagonal entries are the

[RY- I

I}
t
P AT
o ’




negative of that square root in the same column. That is, in the (3 x 3) case above:

—-/a10 0 V02

Al = Va0 —Va21 0
N N

—van Va0
A= 0 ~yag e
V@20 0 -/a19

For k=1,...,N write
2 —1/2, <k
AR = ((xE_yrasx,o) M xE ),

o Alg’ is a predictable process.

DEFINITION 3.2. In our notation the matrices M* introduced by Biane (1]
are,fork=1,...,N

24 .
M= S ((xhyrasxe )V Prx, =Xk ) - / ((XE_y* asx,-) ds.
0<s<t 0
(3.5)

LEMMA 3.3. Fork=1,...,N,

t
M =/ Ak . dM;.
0

Proof. First note
(XK Y dXy = (XE_)* - AXy = (XE)* - (X5 — Xso) = I(Xs = XE_). (3.6)
t
Also, Xy = Xg + / AsXs—_ds+ My, so
0
t t
Mk = / Ak dx, - / AR A X ds
0 0
t
-1/2
- /o ((xE_)* AsXem) T XE )" - axs
t
-./0 (XE)*4sX,s-) 1/2((X§—)*A8Xs—)d3,

and the result follows from (3.6).




LEMMA 3.4. Fork=1,...,N, (MF M*), =t

Proof. MF = /0 Ak . dMs, so
ko k t ok k
ok, by, = /0 Akd{a, My (Aky

¢
= [ @bt asxa )y
- (diag (AsXs—) — (diag Xs—)A; — Ag(diag X5-))
R YRy as X, ) M 24s.

Now for & # 0:
(X-)" ding Xo— = 0 = (ding X, )(X5.)

(XE)* - (diag (AsXs)) - (X5 ) = (XE_)* As X,

t
Therefore, (M k,M'k)t = /0 ds=1t. O

REMARKS 3.5. Fork # ¢, M * aad M? have no common jumps, so [M k, Mz]t
= 0 and (Mk,Ml)t = 0. Therefore, M1,..., MY are a family of orthogonal
martingales, each of which has predictable variation ¢.

Having expressed M k in terms of M we now wish to express M in terms of

the M.
N rt_
THEOREM 3.6. M;= 3 A.’;’Xs_dMZf, so the M¥ form a basis.

Proof. From (3.6) first note that

N
dXs = > (X5 - X, )(XE)* - dX,.
k=1

Therefore,

4 t

= Z / (X5 - X, )(XE_)* - (AsXods +dMs).  (38)
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By definition dM¥ = ((XF_)*AsX,)"YHXE ) . dM, so (XE_)* - dM, =
(x5 )*45x,-)Y2apb. Substituting in (3.8)

+ N
X, - Xg = /0 SR X, )(XEL) A5 X, ) ds
k=1

N o
+3 /0 (X5 - X )((XEy* s x, ) 2dntk,
k=1

From (3.3) and (3.4) this equals

¢ N .t
= /0 AsXods+ /0 Ak x,_dmE. (3.9)
k=1

Compearing (3.7) and (3.9) we see
N _
M=y /0 Ak x,_dMmE. (3.10)
k=1

4. Discrete Derivatives for Different Jump Sizes.
Consider a function f on S = {e;}. For simplicity we suppose f is constant in
time. Then, as noted in Section 2, f is represented by a vector f = (fg,..., fn)*

and

14
F(Xe) = U X2) = (f, Xo) + /0 (F, ArXr_)dr + (f, My)

t N &
= (£, Xo) + ] (£, ArXp_)dr + ) / (f, AE Xr)dME.
0 k=170 (41)

from (3.9), and this is

t X Tk k
= (f,Xo) + fo (Arf, Xp-)dr + ) /0 ((AEY* f, X )AME. (4.2)
k=1

We new re-establish the ‘square field’ formula of Biane (1} by calculating
f(Xt)2 in two ways.

2 N ke 2
LEMMA 4.1, AXf2—2f A*f= Y ((Ak)*f)°.
) k=1

Proof. Function multiplicaiion is pointwise in each coordinate, so 2 corre-

sponds to the vector (fg, ees ,f?v)*, and

FHXe) = (£2, Xo) + ] 2<A" £ Xp_)dr + fj j't«ﬁ',’?)*f?,xr-)dM,‘f
0" (=170 (43)

= (f(Xe))%
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Using the differentiation ruls this also equals

t
= f(X0)? +2 /0 F(Xr2)dF (Xr) + [F(X), £

i
= f(Xq)? +2 /0 (s Xp )AL f, Xy )dr

N
+2 X W(AR) £, X YdME + [£(X), F(X)):
?::1/00 HCEEY Xt 4 OO SO

Now

FX), fXNe = D DAAXr)AF(Xr)
0<r<t

N
=3 3 (@b, X ) (AMEY

k=10<r<t

N N
& i van o
k=1

N .
+y / (%Y £, X,_)\2dr,  from (3.5).
k=1 0
Substituting in (4.4)

t
F(X)? = f(Xg)2 +2 /0 (f, Xr_ )AL S, Xp_)dr

+2 z / (F, XrW(AEY* £, X ) abaE

- [ —1/2 1 ok
* Z / ((A’,S)*f’ XT’)z((Xf—)*ArXr—) dM#
k=1 0

N
. A W) [t,/!:{_l_‘j\*pX ‘20:1‘ 145\;
2 ) (AR) f, Kr ) r. (45):

The special semimartingales (4.3) and (4.5) are equal, so equating the bounded’

variation terms :

2

(Arf?, Xo) = 2, Xr- )AL f, Xro) + Z kY f, X,

Al Lt B L b st o i gt b o 4




That is, as functions on S

N

S ((Aky5)? = arf? -2 - AL,
k=1

O

(.Z,’:)* corresponds to a discrete derivative of ‘amount’, or in ‘direction’ k.
However, the algebra suggests that (A¥)2 should be related to AX.

A more specific relation is now obtained.

LEMMA 4.2. Fork=1,...,N
((ARy )% = (4by* % — of - (4b)* .
roof. From the form of A* and A¥, for any f € RN +1
(4FY f = (ago(~fo + fi)rarg1 1 (~fi + fra1),
o g NN (=N + froN));
(4572 = (aro(- 5§ + ) a1 (— L + fEg),
o areN N (~f + Feon)
(A5)* f = (Vagg(=fo + fi)s o /Ar@1a(~f1 + fro1):
-5 /I N,N(=IN + fraN))-

Therefore, as function multiplication is pointwise, that is coordinatewise:
(@ 5)? = (aro(fE = 20 f + D) aron N Y = 20N frew + Flon)
F((A5* ) = (ero(= 18 + fofe), - JaraN N(=F3 + FN fran))-
Operating coordinatewise, for example,
(—FF + figi) — A= f7 + fifras) = £} - 2fifra; + fra;

and the result follows. O
Finally, we note that substituting (3.10) in (2.9) we have

N ¢ _
X; =<I>(t,0)(X0+ Y /0 @(r,O)—lA,’SX,._dMﬁ). (4.6)
k=1

N e I TP
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Now X,_ is a.s. equal to X which equals

N r
Xr=2(r,0)(Xo+ Y, /0 B(rg,0) "L AN X, dME}).
ko=1

Substituting in (5.1) we have

N ¢
X; = 8(t,0)%0 + 3 /0 8(t,r) A B(r, 0)XodMF
k=1

N N t _ 5
+> Y /0 /0 B(t,r1) AR &(rq,ro) AR2 X, _dME2dME},
k1=1ko=1

Iterating this process we obtain the homogeneous chaos expansions of Biane [1],

(see also Elliott and Kohlmann (3]), in terms of the non-homogeneous transition
matrices @ and the matrices A¥,
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A Partially Observed Control Problem for Markov Chains

RoOBERT J. ELLIOTT

1. Introduction.

In this paper a finite state space, continuous time Markov chain is considered. The
state space of the chain is taken to be, without loss of generality, the set of unit vectors
S = {e}, e =(0,0,...,1,...,0)* of RN, thus facilitating the use of linear algebra.
Basic martingales associated with thie Markov chain are identified and the solution to a
natural filtering problem associated with the chain is given. This describes the recursive
estimation of the state of the Markov chain if only the total number of jumps is observed.
Such a filtering formula can be obtained by specializing results in the book of Brémaud [5];
however, using the basic martingales our notation and framework is quice simple. The re-
lated Zakai equation for the unnormalized conditional distribution is then obtained. In
Section 5 the optimal control of a Markov chain is discussed in the partially observed case,
when only the total number of jumps is known to the controller. This control problem is
treated using the ‘separation principle’, by discussing the control of the unnormalized dis-
tribution given by the Zakai equation — that is, the filtering problem has been separated
from the control problem. The Zakai equation is a linear, vector equation driven by a stan-
dard Poisson process. Because the observation process, which counts the number of jumps,
is correlated with the state process the signal and observation processes are correlated, so,
in contrast to earlier work on controlled Markov chains, the control variabie occurs in the
‘diffusion’ coeficient of the Zakai equation, multiplying the compensated Poisson process

noise. A minimum principle is obtained by adapting techniques of Bensoussan [1] and

£
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calculating a Gateaux derivative. Finally, if the optim kov the inlegrand
in a martingale representation can be obtained more explicitly. This enables the adjoint

process to be described, and new forward and backward equations satisfied by the adjoint

process are derived.
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In addition to the book of Brémaud (5], other works which discuss the control and

filtering of jump processes include [3], (4], [6], [12] and [13].

2. Markov Chain.
For 0 < i < N write ¢; = (0,...,1,...,0)* for the i-th unit (column) vector in RN+1.
Consider the Markov process {X;}, t > 0, defined on a probability space (2, F, P), whose

state space is the set

S = {60,61,...,6N}.

Write pi = P(X: = ¢;), 0 < ¢ < N. We shall suppose that for some family of

matrices A¢, pr = (p?,...pl)* satisfies the forward Kolmogorov equation
—_T = Atpt. (21)

A; = (aij(2), t = 0, is, therefore, the family of @ matrices of the process. We shall
suppose |a;;(t)] < B for all ¢,5 and ¢ > 0. Because A, is a Q-matrix

ai(t) ==Y aji(%). (2.2)
J#i
The fundamental transition matrix associated with A will be denoted by ®(t,s), so

with I the (N + 1) x (N + 1) identity matrix

B - pats),  s)=T (23)
.d_?g;’f.). = —®(t,5)4,, o(t,t) = 1. (24)

(If A; is constant ®(t,s) = exp(t — s)4.)

Consider the process in state z € S at time s and write X, ,(z) for its state at the later
time ¢t > s. Then E[X, (z)] = E,;[X:] = ®(¢,s)z. Write F for the right continuous,
complete filtration generated by ¢{X, : s <r < t}, and F; = F?. A basic result (see [8],
[11]) is
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LEMMA 2.1. M;:: =X, -—Xo - / AL X, dr is an {Ft} ma.rtinga.le.
0

Proof. Suppose 0 < s <¢. Then

. t
B[M, - M, | F))|=E[X:. - X, - / A X,_dr | F]
- 3

. t
.y Xt—X,—/A,.X,_drlx,]

3 t
= B[Xc-X, - [ aXr| K],
because X, = X,— for each w, except for countably many r,
t
= L, X, [Xt] - X, - / ArEs,X. [Xr]d"'
s

t
= ®(t,8)X, — X, — / A ®(r,s)Xdr =0
s

Therefore,

t
Xe=Xo+ / A Xpdr + M,
0

t
= Xo + / A Xr_dr + M,.
0

by (2.3).

(2.5)

NOTATION 2.2. If ¢ = (zo,21,...,2xn)* € RNVF! then diag z is the matrix

To 0
Ty

0
TN

We now give a martingale representation result.
LEMMA 2.3. t
X = @(¢,0) (Xo + / O(r, O)'ler).
0

(2.6)

Proof. The proof follows from (2.5) by variation of constants. Alternatively, differ-

entiate (2.6).
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3. Some Basic Martingales.

If ,y are (column) vectors in RN+ we shall write - y = z*y for their scalar (inner)
product.

Consider 0 £ 4,7 < N with 7 # j. Then

(Xs-+ e,-)e;-'dXs = (X,- - ei)e; AKX,
= (X,~- e,-)e;f(Xs — X)) =I(Xs- = &5, X; =¢j).
Define the martingale .
Mtij = /0 (Xo— - ei)e;dM,.
{Note the integrand is predictable.) Then
MY = /0 t(X,_ -ei)e}dX, ~ fo t(X,_ - ei)e] Ao X -ds

and, writing Ny(%, §) for the number of jumps of the process X from e; to e; up to time ¢,
this is

= Nyi,j) - /0 (X, = e:)azi(s)ds

t
= NGi,5) / I(X, = ei)aji(s)ds,
0
because X, = X, for each w, except for countably many s. That is, for ¢ # j,
t 3
Niig) = [ 10X, = ea(s)ds + M.
0

For a fixed j, 0 < j £ N, write Ny(j) for the number of jumps into state e; up to
time ¢t. Then
N N t .
NiG) = 3o ) = Y [ 1K = ea(s)ds + ]
i=1v0

i=1

1#] i%]

. N .
where M} is the martingale Y M;’. Finally, write N; for the total number of jumps (of

=1

i#]
any kind) of the process X up to time ¢. Then

N N N .
No= YN = 13 [ 1% = edas(s)ds +

j=1 j=1i=1
i#]

e e ke o o e S Seeme e— — S
e s e

v
Ly M g W P R e




s oo o S T 4o —
-

S
R

St b T N ST

. N . )
where Q, is the martingale Y M;. However, from (2.2)

i=1
N
ai(s) = =) a5i(s)
j=1
J#1
$0
N .
Ny=-— Z/{; I(X, = e;)agi(s)ds + Q. (3.1)
i=1

4. Filtering.
A natural problem is the recursive estimation of the state X; of the Markov chain,
given the number of jumps which have occurred to time ¢. (Formulae for other counting

processes such as Ny(7) can be given.) That is, we have on the probability space (R, F, P)
a

SIGNAL, given by (2.5), t
Xe=Xo+ / A X,_ds+ M, (4.1)
0

and an

OBSERVATION PROCESS, given by the counting process

t
Ny = / h(s, Xs)ds + Q. (4.2)
0
Here N
B(s, X,) = = ) I(X, = ex)aii(s)
i=1

NOTATION 4.1. Write a(s) for the vector (—ago(s), —a11(s),..., —anw(s))*. Then
h(s, X,) = a(s) - X,. We shall further abbreviate h(s, X,) as h(s).

Recall X; and N, are both adapted to the filtration {F;}. Write {¥;} for the ri, at
continuous, complete filtration generated by N, so Y; C F; for all ¢.

NOTATION 4.2. If {¢:}, ¢ >0, is any process write ¢ for the Y-optional projection
of ¢. Then, (see [7], p. 60), for all £ > 0

de=E[¢: | Y] as. (4.3)

=
ke
-
B
%
=5
=
B




Similarly, write 2) for the Y-predictable projection of ¢. Then, for allt >0
e = Elpe | Y] as. (4.4)
REMARKS 4.3. From Theorem 6.48 of [7], for almost all w
&t = ét

except for at most countably many values of . Also, as noted previously, X; = X;_ except

for countably many values of £. Therefore,

t. ¢
/iz(r,X,)du:/ h(r, X, )dr
0 0

t
= / h(r, X, )dr.
0

NOTATION 4.4. Write
ﬁt = -)?t = E[Xt l Y}],

and note Py = E[Xo] = po, say. Also, as h(r) = a(r) - X,
h(r) = a(r) - pr-
We shall also introduce the vector
h(r)X, = diag a(r) - X,
so  h(r)X, = diag a(r) - pr.
DEFINITION 4.5. The INNOVATION PROCESS is

.
Q¢ := N, — / h(r)dr
0

= N;— /'iz(r)dr = N; - /.7L(r—)dr,
0 0

by Remarks 4.3.




It is easily checked that @ is a Y-martingale. Therefore, we can write

t
Ni = / A(r—=)dr + 0. (4.5)
0
Calculations using Fubini’s theorem show that the process
— t
M, := pr— py — / Agps-ds
0

is a square integrable martingale on the Y-filtration. Theréfore, M can be represented as

a stochastic integral with respect to @,

— t ~
Mt=/7rer
0

where 7 is a Y-predictable R¥*! valued process such that

E[/ I'yrlzh(r)dr] < oco.
0
Therefore, we can write

£

t
E[X, | Y] == po + / Arprodr + / 7eds. (4.6)
0 0

It is known, see [4] or [5], that

¥ = I(p(r=)-a(r) # 0)((r—)-a(r)) " {diag a(r)-$(r—) - (h(r—)- a(r))p(r—) + A-B(r-)}.
(4.7)

Therefore p, = E[X, | Y] is given by the equation
Pt =po+ /0‘ Aspr-dr + /0 'Yr(dN" - a(") * Pr—dr) (4.8)

where 7, is given by (4.7).

REMARKS 4.6. The disadvantage of (4.8) is that it has the inverse factor (a(r)-pr~ ).

This problem is avoided by considering the related Zakai equation for the unnormalized
distribution.
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Suppose there is a k > 0 such that —a;;(r) > & for all ¢ and 7 > 0. Then h(r)™! =
(a(r)- X,)~! < k7! for all 7 > 0. Introduce a new measure P; on (Q, F') such that

[dP LI F] =4 (4.9)

where A is the martingale

Ae=1+ /O tAr_(h(r—)“l - 1)dQ,. (4.10)

It is known, (see [4], [5]) that under P; the process Ny is a standard Poisson process.

Consider the (P;, F') martingale

v — — "

Ar=1+ /0 tK,_(h(r—)—l)dQ—,. (4.11)

Then it is easily checked that A;Kt =1.
To obtain the Zakai equation we take P; as the reference probability and compute

expectations under P,. However, it is under measure P that
Ny = /(;th(r—)du + Q.
Write II(A;) for the Y-optional projection of A under P;. Then for each ¢ > 0
O(A;) = E1[A: | V)]  as.
Quoting again from (4] or [5] we know that
(&) =1+ /0 t/\,.d5, where A, = II(A,-)(h(r-) - 1). (4.12)
For any integrable, F;-measurable, random variable ¢ write

o(¢) = Ey[Aeg | V2].

Then
(X = BifAXe [ Yd=q, soy
Also, ‘ t
o(1) = T(K) =1+ / (K, _)(h(r=) - 1)d0... (4.13)
0
8
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Now ¢; is an unnormalized: conditional distribution of X; given Y;, because
pe = E[X: | Vi) = o(X1)/o(1) = ¢ /TI(A). (4.14)

Note that po = po = go. The Zakai equation for the unnormalized distribution ¢ is,
therefore, obtained by calculating the product

ge = pe - II(As) (4.15)

using (4.8) and (4.13) to obtain:

t t
P / Argo—dr + / (diag a(r) = I + Ar)gr—dD),. (4.16)
] ]

5. Optimal Control.

Consider a Markov process X, as defined in Section 2, whose state space is the set .S
of unit vectors {eg, e1,...,en} of RN*1. However, we now suppose that the family of Q-
matrix generators A¢(u) depend on a control parameter u € U. Here U, the set of control
values, is a compact, convex subset of some Euclidean space RF. We take 0 <t < T and
suppose A¢(u) is measurable on [0,T] x U and A(-) is continuously differentiable on U.
Further, we assume |a;;(¢,u)| < B for (t,u) € [0,T] x U.

We suppose that only the total number of jumps to time ¢, Ny, is observed. (The
techniques below work for other kinds of observation processes such as Ny(j, k), N¢(j) etc.)
{F:}, (resp. {¥3}), is the right continuous, complete filtration generated by X (resp. V).

CoNTROLS 5.1. The set U of admissible controls is the set of {Y;}-predictable
processes with values in U. This means that, if T;,T5,... are the jump times of N, then
for T, <t < Ty41, u € U is a function only of 13,T5,...,T, and ¢. For each v € U, as in
Lemma 2.1, M* is a (P, {F;}) martingale where

For u € U, write

a(s,u) = (—000(3, u)) "au(S,U), vy _aNN(‘s’ u))*

gkt 8w BT, o




and ]
h(s,u) = h(s,X¥) = a(s,u) - X3 (5.2)
Then with ~ again denoting the Y-optional projection under P
po(v) = Xy = B[X} | Y]
and A(s,u) = a(s,u) - s(x). Also,

h(s,u) - X, = diag a(s,u) - X
and

h(s)u) ’ X: = diag a(sau) ﬁs(u)

N can, therefore, be written

t
Ny = / h(s,u)ds + Q} (5.3)
0

= / tiz(s-—, u)ds + Q2. (5.4)
0

Unlike the situation considered in [9], the noises in the signal and observation processes
are correlated, [X*, N]; # 0.

CosT 5.2. A real function on the state space S = {eo,e1,...,en} is represented by
a vector £ = (4y,...,En)* € RN*), Write (,z) = £* - = for the inner product on RN*1.
The control problem we wish to consider is that of choosing u € U so that the expected

cost
7(w) = B(ie, X3))
is minimized.
NoTATION 5.3. Write Py, as in Sectiox 4, for the probability measure under which

N is a standard Poisson process.

For each u € [ introduce the (P, F') martingale
t
T =1+ [ Kl (b= - DD,
0

10




"

Sl
" f}ﬂwf‘p'wdw i

and write II(A, ) for the Y-optional projection of A under P;. Then, E; [é"%% | F] =4
and with
o(X) = B[R X¥ | Vi) = qu(u)

we have, as in (4.15),
ge(u) = O(A, )pe(u).

Furthermore, with A,(u) = (a;;(t,w)) write

By(u) = (ding (alt,w)) — I + As(w)

-1 ao1(t,u) ... aon(t,u)
am(t, u) -1 N alN(t,'LL)
aNo(t,u) -1

Then, for u € U, the unnormalized distribution ¢;(«) is given by the Zakai equation

w)=p+ [ A+ [ Bilulae-()T,

Here @ is a standard Poisson process under P;.

The expected cost if u € U is used is
J(v) = E{(¢, £1)) = E1[Az (6, X}3)] = Ea(6, KpX 1))

= Ei[(6, B[Ap X} | Yr))) = Ea(6, o8-
The control problem has, therefore, been formulated in separated form: find u € U which
minimizes
J(u) = Eq[(¢, a7)]
where for 0 <¢ < T, g(u) satisfies the dynamics
W)=+ [ A)ae-iu + [ Bululge-()4T, (55)
Under the measure Py, N is a standard Poisson process, so @, = N; — t is a (P},Y)

martingale. Furthermore, the conirols u € U are in the ‘stochastic open loop’ form dis-

cussed by Bismut [2] and Kushner [10]. That is, the controls are adapted to the filtration,

as described above, and are not explicitly functions of the state q.




i 6. Differentiation.

NOTATION 6.1. For u € U write ®%(¢, s) for the fundamental matrix solution of

.

A8 (t,s) = Ay(u)®*(t—,s)dt + By(u)@*(t—, s)(dN, — dt) (6.1)

with initial condition ®¥(s,s) = I, the (VN + 1) x (N + 1) identity matrix.
Note that 4,(u) ~ By(u) = diag (1 + a;;(t,u)) and write

t
D¥(s,t) = diag (exp/ (1+ a,-,-(r,u))dr).
38
Thenif T, <t < Tn+1,
&*(t,0) = D*(¢,Tn)({ + Br, (ur,)) D*(Tn, Tn-1)({ + Br,_, (uz,_,))
(T4 Br(u3,)) D*(T3,0). (62
The matrices D*(s,t) have inverses
t
diag (exp—/ 1+ a,-,-(r,u))dr);

we make the following assumption:
A5SUMPTION 6.2. For u € U and ¢ € [0, T) the matrix (I 4 By(u.)) is nonsingular.
The matrix & is the analog of the Jacobian in the continuous case. We now derive

the equation satisfied by the inverse ¥ of ®.

LEMMA 6.3. For u € U consider the matrix ¥* defined by the equation
t t _
Ut s) = / T¥(r—, ) An(u)dr — / U*(r—, $)B,(u)dD,
s s

+ @ (r—,5) B2 ()T + Bu(u)) "V dN. (63)

Then ¥¥(t,3)@"%(t,s) =1 fort > s.

Proof. Recall

G4, 8) =1+ [tA,(u)@“(r~,s)dr + /:Br(u)fb“(r—, 3)d@Q,. (6.4)

=3 12
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Then by the product rule

t t
\I/<I>=I+/ KIJA<I>dr+/ ¥B3dQ,
s s
t t _ t
—/ I’A@dr—/ \IIB<I>dQ,_+/ UB%(I + B)"'®dN,
8 s 8

t I.t
- / UB*®dN, +- | UB(I+ B)' BN,
=1,

as the integral terms cancel. O

We shall suppose there is an optimal control u* € U. Write ¢* for ¢*°, ®* for ®*
etc. Consider any other control v € U. Then for 8 € [0, 1],

ua(t) = u(t) + 0(o(t) — u(t)) € L.
Because U C R* is compact, the set U of admissible controls can be considered as a
subset of the Hilbert space H = L[ x [0,T] : R*]. Now
Ju = J(u). (6.5)
Therefore, if the Gateaux derivative J'(u*) of J, as a functional on the Hilbert space H,
is well defined, differentiating (6.5) in 6, and evaluating at § = 0, implies
(J'(w"),v(t) —u*(2)) 2 0
forallv e U.

LEMMA 6.4. Supposev € U is such that u} = u* + 6v € U for 8 € [0,a]. Write g,(8) for

the solution qy(uj) of (5.5). Then z; = a—%g@'e exists and is the unique solution of the
=0
equation

TOAL LY. . . :
2t =A(5;(r,u ))vrq,_dr+AAr(u Ver—dr

t/dB, . = t . _
+ [ (Got)oett-d, + [ Blw)-dG.. (6:6)
rt
Prool. ¢{8) =po+ j Ar(u*+6v)gr-(6)dr + j Br(u +0v)q,-(0)dQ,. The stochas-
tic integrals are defined pathwise, so dlfferentlatmg under the integrals gives the result.
Comparing(6.4) and (6.6) we have the following result by variation of constants.

13




LEMMA 6.5. Write
¢ 0A
—_ Ty * _ il *® *
no,¢ /(;\J (r ’O)(au (r,u ))v,-q,_dr
to 8B . . =
+ [ ¥-,0)(Go0))orss 40,

- [ ¥ -0+ B ) Bw) () oegr AN (61
Then 2t = Q*(t, 0)7]0,t-

Proof. Using the differentiation rule

t t
<I’*(t,0)no,¢=/@i-dn+/ d®*n.. +[®,7]..
0 0

Because $* ¥* = I, therefore

2,0 = [ (Zatra))o_dr
+ [[(Bow)eaa,
- [(@+ By B ) (Zrw) i,
+ /0 ' 40 ()8 (7=, O)rordr + /0 'Bo(w)®* (7=, 00 50,
+ [ B (Z ) oesi-a;
- [ Bt + B B ) (G0

Now the dN integrals sum to 0, showing that ®*5 satisfies the same equation (6.7) as =.

Consequently, by uniqueness, the result follows.

gty o R




NOTATION 6.7. Write &*(T,0)' for the transpose of ®*(T,0) and consider the square
integrable, vector martingale

M, := E,[8*(T,0)'¢ | V4.

Then M; has a representation as a stochastic integral

t
M, = E[®*(T,0)'{] + /0 ,dQ,

where 7 is a predictable RN*! valued process such that

T
/ Eujy2)dr < oo.
1]

Under a Markov hypothesis v will be explicitly determined below
DEFINITION 6.8. The adjoint process is

pe = U*(¢,0)' M.
THEOREM 6.9.

== = /0 "5 [(pr._,{(%g(r,u*)_(I—{-Br(u*))-l B,(u*)(aB u)>}

+ (vr, U*(r—,0)(I + B,(u*))™ (%g(r, u*)) v,q:_>] dr.

69
Proof. Firt note that
0trto) = [ (e, 0) (B s )
+ OT M, U (r— ,0)( (r,u"))vrg;— ) 40,
= [ (¥ # =0T+ BBl (G i
[ otoa )@ [ (1000 (B )t ),
[ om0 B B (G i

15
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Taking expectations under P, we have

dJG(Z;LZ) oy = BAl(6, (T, 00n0.7)]

= Ei [(Q*(Tg O)'ea TIO,T)]
= E1[(Mr,n0,1)).

Combining the last two terms in (6.9) and using the fact that N, — ¢ is a P; martingale,

this is

- [/ l(r (o))
- <p,~_,(I + B,(u*))‘lB,(u*)(%-g(r, U*)>'Ur4:—>

+ <7,,,\I'*(r—,0)(I+ B.(u*))™? (%—Ig-(r,u*))v,q:_ﬂdr.

Now consider perturbations of u* of the form

ug(t) = u*(2) + 6(v(?) — u(?))

for § € [0,1] and any v € U. Then as noted above

dJ(Ug)

T lozy = (@5 0(t) —u () 2 0.

Expression (6.8) is, therefore, true when v is replaced by v — u* for any v € U, and we can

deduce the following minimum principle.

THEOREM 6.10. Suppose u* € U is an optimal control. Then a.s. in w and a.e. in ¢

(per { (G2 ") = (14 Bw ) Butw) (G ) e — )

16
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7. The Equation for the Adjoint Process.

The process p is the adjoint process. However, (6.10) also contains the integrand 4. In

this section we shall obtain a more explicit expression for «y in the case when u* is Markov,
and also derive forward and backward equations satisfied by p.

AsSUMPTION 7.1 The optimal control u* is a Markov, feedback control. That is,
u* 1 [0,T] x RN+! = U so that u*(s,q*_) € U.

Note that if u,, is a Markov control, with a corresponding solution g¢(um) of (5.5),

then um can be considered as a stochastic open loop control um(w) by setting

Um (W) = um(s, g5 (um)(@)).

This means the control u,, “follows” the ‘left limit’ of its original trajectory g,(un,) rather
than any new trajectory.

LEMMA 7.2. Write § for the predictable “integrand” such that

Apy = py — pi— = 6 AN,

ie., Pt = pi— + 6 AN;.

Furthermore, write

qt- =4,

B, (u*(t—,q)) = B*(¢:-) = B*(g),

and

By(u*(t,41)) = B*(q1)-
Then

8e(q) = (I + B*((I+ B*())0) ™ pe-((I + B*(2))a) — P-(9)- (7.1)

Proof. Let us examine what happens if there is a jump at time ¢; that is, suppose
AN¢ = 1. Then from (5.5)

g = (I + B*(¢))q.

17
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By the Markov property and from (6.2) and Definition 6.8,

pe = E[D*(t, Te)(I + By, (u*)) ... DX(T, Tn )¢ | Vi)

= pe(ge)
= p(({ + B*(9))q)

= (I + B*(q:)") " pe-((I + B*(q))a),

and the result follows. Heuristically, the integrand § assumes there is a jump at t; the

question of whether there is & jump is determined by the factor AN;.

THEOREM 7.3. Under Assumption 7.1 and with §; given by (7.1)

¥r = ®*(r--,0) ((I + Bl(¢v*))ér + B.(v*)py-). (7.2)

t

Proof. ®*(¢,0)'p, = M, = E,[®*(T,0)'¢ | Y] = E,[@*(T,0)'4] + / 7rdQ@,.. However,
if u* is Markov the process ¢* is Markov, and, writing ¢ = ¢}, ® = (I>*(()t,0),

Ey[2%(T,0)'¢| Y] = E,[®'®*(T,t)'¢ | ¢, %]
= 3'E[®*(T,t)'¢] q].
Consequently, p, = E1{®*(T,t)'¢ | q] is a function only of ¢, so by the differentiation rule:

t Opy— — top,.—
Pt = Do +/; 3 (Agr—dr + Bq,-dQ,) +/; 3 dr

Opy—
+ - Py — Bq,._AN,
. ;,.St (pr Pr dq ar )

tap_ t _
=po + "= (Ag,— ~ Bgr_) + 6, dr+/6,.d -
Po /o[aq(q gr-) ] | &rdd

Evaluating the product:

4
a rv-
My = 8*(¢,0)'pe = po + /0 & (r—0) [ £ (Ag- - Bar-) +6)dr

¢
N\ At k)

617-_ ft_-» Nt~ e -/
= dr+j Q'(r—,O)'Orer-i-f @ (r—,0) Apr-a
0 0

or

+ rt@‘( ~,0)’
r=,
./0

t t t
+ / &*(r—, 0) B'p,d0. + / &*(r—, 0y B'S,d0, + / &*(r—, 0) B'6,dr.
0 0 0 (7.3)

18
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However, M, is a martingale, so the sum of the dr integrals in (7.3) must be 0, and
¥r = &*(r—,0)' (6 + By (u)ér + Br(uf)pr-)-

O

THEOREM 7.4. Suppose the optimal control u* is Markov. Then a.s. in w and a.e. in t,

u* satisfies the minimum principle
04 * LAY 9B * *\ ¥
(res 5olryw)(or = ulgio ) + {6y S (ryu)o = uidgi) 20, (T4)

Proof. Substituting v from (7.2) into (6.10), and noting B(I+B)~!~(I+B)~'B =0,
the result follows. (Substituting for B and 6 gives an alternative form.)

We now derive a forward equation satisfied by the adjoint process p:

THEOREM 7.5. With § given by (7.1)

t
po=BE(008 - [ Aupe-dr
0

t t
- / (I + BL(u?))6,dr + / 6,dN,. (7.5)
0 0
Proof. p; = ¥*(¢,0)'M,; and from (6.3) this is

¢ t t
= Ey[8*(T,0)'t] - / AT Mdr - / BTV MAQ, + / (I +B')"1B?¥* MdN,
0 0 0
t _ t t
+ / Uy, dQ, — / B'¥¥4.dN, + [ (I + B")1B?¥*y,dN,
0 0 0
~ t t _ t
:.El[@*(T,O)'f]—/A’p,_dr—-/B'p,_dQ,.-}-/ (I + B')"'B"p,_dN,
0 0 0
t t
+ [+ B9+ B, - [ (14 B) BT+ BYor + Bpr )N,
0 0

t ot _ t
= E1(®*(T,0)'{] —-/ A'p,-._dr—i-/ (I + B"6:dQ, - / B'§,.dN,
0 0 0
and the result follows. 0

However, an alternative backward equation for the adjoint process p is obtained from
the observation that the sum of the bounded variation terms in (7.3) must be identically

zero. Therefore, we have the following result which appears to be new:

19
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THEOREM 7.6. With § given by (7.1) the Markov adjoint process p:(q) is given by the

backward equation

9p:

a * * * *
5t (4@ = B )a+ A°(@)'p + (T + B(0) )5 =0

with the terminal condition

pr==~

8. Conclusion.

A finite state space Markov chain was considered. Without loss of generality its
state space was taken to be the set of unit basis vectors of RN+1. Basic martingales
associated with the Markov chain were identified and the solution to filtering problems
given when only the total number of jumps are observed. On the basis of knowing only the
total number of jumps a control problem associated with the Markov chain is discussed
in ‘separated’ form. That is the Zakai equation for the unnormalized distributions is
obtained. This is a linear, vector equation driven by a standard Poisson process in which
(unlike earlier work on controlled Markov chains) the control variable also appears in the
‘diffusion’ coefficient multiplying the noise term. By adapting techniques of Bensoussan
and calculating a Gateaux derivative the minimum principle satisfied by an optimal control
is obtained. Finally, in the case when the optimal control is Markov, the integrand in a
martingale representation can be obtained expliciily, and forward and backward equations

satisfied by the adjoint process derived.
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Itegration by Parts for the Single Jump Process
Robert J. Elliott and Allanus H. Tsor
1. Introduction.

Integration by parts has played a basic role in the Malliavin calculus and its applica-
tions, particularly in the work of Bismut (1981). In this paper the concept is investigated
in the fundamental situation of a stochastic process with a single random jump. When the
state space of the process is Euclidean space (or, possibly, an open, non-empty subset of
a Buclidean space) the techniques of Norris (1988) can be specialized to the single jump
situation. This method, described in Section 2, considers a small ¢-perturbation in the
state space of the process. The cffect of the perturbation can be removed by a Girsanov
change of measure, and the integration by parts formula is obtained by differentiating in €.

However, for a process whose state space is a general measure space, the perturbation
of the kind considered by Norris may not make sense. Such processes include those with
discrete state spaces, and, in particular, the process which observes a single random instant
at a time T. In the latter case the process p; = Ij>T takes only the values 0 or 1.

For general jump processes, therefore, an alternative e-perturbation in the time direc-
tion is introduced. By differentiating a new integration by parts formula, which involves
a time derivative, is obtained. In the case of the fundamental process p, an alternative

expression for the integrand in a martingale representation result is derived.

2. Integration by Parts for IR¢-Valued Single Jump- Processes.
Consider a single jump process with state space IR¢ for some d > 1, which remains at
its initial position zy until a random time T, when it jumps to a new random position Z.
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The underlying probability space is taken as ([0,c0] x IRY, B([0,00]) x B(IRY), u). For
t >0, let F; be the completed o-field generated by the process up to time {. Suppose

(X, A) is the Lévy system for the process (sce Elliott (1982)). For A € B(IRY), let

p(t,4) = Iiyrizea (2.1)

B(t, A) = — / A, 4) 2L (2.2)
10,¢AT] Fy-

where Fy = p(Jt,00] x IRY). Then ¢(¢, 4) = p(t, A) — p(¢, 4) is an Fy-martingale.
We assume that Fy and A are absolutely continuous, so that there exist functions f,

and ¢(y) > 0 such that

dFy = fyds

A(s,dy) = g(y)dy.

Consequently, ¢
—g(y) £ dyds i s<T
(ds,dy) = g (23)
0 if s > T.
Let v(t,y) be an IR?-valued function which satisfies:
(i) wv(t,-)is C* for each t > 0; v and 5% v(t, y) arc uniformly bounded.
(ii) supp v(-,+) € [0,00) x K for some compact K C IR?.
For small ¢ € IR and any ¢ € L(u), define p® by:
t t
/ / #(s,y)p°(ds,dy) = / / ¢(s,6°(s,y))p(ds, dy), (2.4)
ve /B U VL

where

0°(t,y) =y + ev(t, y).

o
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Set

aee(t,y) g(6<(ty))
(y)

o= [ [ 0cte) = Vel

Define the family {Z§, t > 0} of exponentials by:

Ae(t,y) =

and

Z{ = exp(X, —

tOlr—-‘

(xe,x) I 1+ ax,)eaX
0<s<t

= exp //1og/\‘ $,y)dp — //(/\‘(s y)-—l)dp).

Then Z7 satisfies:
t
2 = [ [ 2 0e(s) = atds,dv)
0o JE
and {Z¢, ¢t > 0} is a martingale with E[Z{] = 1.
Define a new probability measure p¢ by:

dut
dp

=2Z{ on Fi.

LEMMA 2.1. Under u¢, p® has the original law of p.

Proof. It suffices to check for test functions ¢ € L!() and for
t
U =exp { [ [[osupe(as, i) 2¢

0o JE

t
= e { [ [ #6.6s,umids ) 2

0 VE

that E[Uf] does not depend oun €. Let

o= o { [ 606,60 u)ptas,an).

3

(2.6)

(2.8)




TR

e v S R

By the differentiation rule,

t t
vi=1+ [ [viaz+ | [zeav, 429,
0 JE 0ovE

But
14 t
/ / Z¢_dY, = / / UZ_[exp((s, 6(s, 1)) - Lp(ds, dy)
0 JVE 0 JE
AY; = YT— [@(p{(ﬁ(T, oe(T’ Z))} - l]Is='I‘
AZE = Z5_(N(T, Z) = L.
Hence,
{Y, ZE]g = AYTAZ%I,ZT
= Ur_lexp{8(T,6°(T, 2))} - 1)\ (T, 2) - >t
t
= [ [Vt 06,00)) = 10(5,0) = s ),
¢ JE
Hence,

t
Uf = 1+ Mastingale + [ [ UZ_fexp{g(s,6(5, 1))} ~ 1N“(e, y)ptds, )
0 JE
t
=1 + Martingale +/ /Uj_[exp{t,é(s, 0°(s,9))} — 1JA*(s, y)i(ds, dy)
o JE

4
= 14 Martingale — / /Uj_[cxl)w(s,&‘(s,y))} = 1JA%(s,v)g(y) —Ij;i dyds.
0 JE

§

Thus

EUf] =1~ / /;E[U:uexp{qs(s,a%s,y»} ~ 1)g(6(s, ) 9%7& j,— dyds

=1 [ [ Bl (o060} st £ ays




by the Jacobian formula. Thus E[Uf] is independent of ¢.

As a conscquence of Lemma 2.1, we have

E|27exp{$(T, Z +eV(T, 2))}] = Elexp{¢(T, 2)}] (2.9)
which leads us to the following theorem:

‘THEOREM 2.2. Suppose G : {0,00] x RY — IR is positive, bounded and that its partial

derivative @5({’—3) exists and is bounded. Then

/ / 3; Ve +E ((/)) V(t,v))a(ds, d)) G(T, 2)] =—E[QC%Z—) V(T,2)|.

(2.10)
Proof. Differentiate (2.9) with respect to ¢, then set € = 0 to obtain
B[ d 7o l esp{4(T, 2 +¢V(T,2)))| _]
de T - ’ H e=0
+E[Z§~ 4 exp{&(T, Z + V(T Z))}] ] =0. (2.11)
L e=0 de ’ ’ e=0

From (2.8),

ZT— / / Z‘e’ (A(2,y) — 1)g(dt, dy)

d
¥ / / 2e. L (t,y)a(dt, dy).
0o JE de

From the definition of A*(¢,y),

and from (2.7),

'%W“WWM”FM:“"'M*W:”Mw'W R K e
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Also,

(1)
de

o= L e+ 28 ot

_ 9'(y)
et (t y) + 2 ) u(t,y).

Hence

Thus (2.11) becomes

B ([ [ v+ E8 ot atat,a) exveir, 20
= [ exp{¢(T, z)}( HT,2))V(T,2)]. (2.12)

Let ¢(T, Z) = log G(T, Z). Then (2.12) becomes (2.10) and the proof is complete. a

3. Integration by Parts for a General Jump Process.

Consider a single jump process with values in a Lusin space (E, ). The underlying
probability space is ([0,00] X E, B([0,00]) x £, p). In this section we suppose that for
every t > 0, Fy > 0, and both F; and A, are continuous in {. Furthermore, we assume

that there exists a function a(s), with a(s) > 0 for all s > 0, such that

t
A¢=/a(s)ds.
0

Let u : [0,00] x £ — IR be a bounded, positive, deterministic function such that

u,(y) =0 if s¢/0,0]

for some fixed b € IR. For € > 0, define

- /O /E (1 + eus(y))A(s, dy)dAs. (3.1)




Consider the new measure ¢ which has a Lévy system (X, A¢). Then (sec Elliott (1982))
i€ & i, and if

dp®

€
=

)

we have

LE(t) = /E(l +£u¢(y))/\(t,dy)exp{ - At'/;eu,(gj))A(s,dy)dA,}. (3.2)

Furthermore, if Lf = E{L(t) | Fi) then {Lf, ¢ > 0} satisfies
t
Lé=1+ / Lé_dM,
0

{
=1+ [25 [ cu(u)ate, dupatas, ), (33)
0 E
where

M, = /(;t/l‘:su,(y)/\(s,dy)q(ds,E).

IT F¥ = p*(Jt, 00] x E), then
t
Ff = Fyexp { - / / eus(y))/\(s,dy)dA,}. (3.4)
0o JE
Define
Ye(t) = sup{s: Ff > F}.

Then ¥.(t) is an increasing function of t, and Fj,‘ 0= Fi,ie,

#5(Jhe(t), 0] x E) = p()t, 0] x E),

Hence if we let 6c(t) = P 1(¢), then under £ 9¢(T) has the same distribution as T

under y. This observation leads us to the following theorem:

[
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THEOREM 3.1. Let G(i,z) be a real-valued function defined on [0,00] x E, which is

bounded and has bounded partial derivative %G(t, z). Then

Bl([[ [[utsie.anatas, 2))6(2,2)

- -E[OG(;’;Z) a(lT) /0 T /E u,(y))\(t,dy)atdt]. (3.5)

Proof. From the above discussion we have
E[G(T, 2)) = E°[G(¢(T), 2)]

= E[L7G(4.(T), 2)] (3.6)

where E¢ denotes that expectation is taken with respect to p¢. Differentiate (3.6) with

respect to €, then set € = 0 to obtain

2%

_ G(e(D), Z)L=0] + E[L‘T

3

26,2 _] =0 (D

f—1

From (3.2) and (3.3),

dL5 T
T lemo = /0 /E“t(y)A(t,dy)q(dt,E)- (3.8)
Also,
d 0 0
T G(QSC(T),Z)L:() = 5 G(T, Z) 7 (gSC(T)lE:O_

To evaluate 5% ée(T)

& note that Fy ) = Fi. Hence

=

ol N
Fi=F=F GXP{ - / /Leu,(y))A(s,dy)dA.,}
0 >

ng,‘(()

=0 Fl( - '/(;t/Eu,(y))\(s,dy)dA,) (3.9)

de

B




On_the other hand (see Elliott (1982)),

Fy =exp (—- /ofo-(s)do*)

S0
Pelt)
Fs, (1) = exp (—- /0 oz(s)ds).
Thus
dFs, .y dde(t) ) #e(1)
et = —alge() Ll o (- / a(s)ds )
and

A0 dé.(t)
de L:(]— a(t) de L:O Ft (3.10)

From (3.9) and (3.10), we obtain

e e = 5 L e 11

Now from (3.8) and (3.11), we have (3.5).

4. Integration by Parts and Martingale Representation.

In Section 3, we considered a single jump process with values in a Lusin space.

suppose that at its randon

i jump time T, the process jumps to a fixed position z; € E. If

Now

we define A¢ simply by

t
Af = / (1+eu,)dA,
0




where u is just a function of the time, which is positive, bounded and vanishes outside
a bounded interval, then the method described in Section 3 would give us the simpler

integration by parts formula:

E[( /:Tu,dqs) &(T)] = —E[iggl -a—(% /0 Tusa,ds] (4.1)

where G is a bounded function defined on [0, co] with bounded derivative. On the other
hand, if we assume E{G(T)] = 0, then G(T") has the martingale representation (see Elliott

(1982)):

T
G(T) = /0 s dgs (4.2)

where

Yo = G(s) - Fs"/ G(v)dF,.
0

If we substitute (4.2) into the left side of (4.1), we have

E[(/OTusdqs> (/()T'stq.e)} = E[/()Tusvsd(q, q)a]

- / )

T

= pl .

— LL o uS’73a3dO]

o«
= E[/ I<r uﬁsasds]. (4.3)
0
Now, if we define the measure = by:
dG(T) 1
o(dt) = ——= ——

' N O o
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then the right side of (4.1) is

oo pt 00 rOO
—E{ f / usa'sds;l(dt)] = -E{ / / Incactcos usozsds;c(dt)}
0 0 0 0

—E{/ooovr[s,oo)u,asds}

—E{ CdG(T) 1

Il

9 -&z?l-;)- Is_<_T<oo usa,ds].

(4.4

A comparison between (4.3) and (4.4) leads us to the following expression for +:

THEOREM 4.1.

given by:
__dG(T) 1
3“5{ d  aT) ISS7<°°’f"}'
Proof.
dG(T) 1 L [®dG@) 1
E[ dt  ofT) 1357<°°if'“} =-F /, dt  aft) dF
L [P da@) 1
— 1 —_—t
= Fs /3 dt a(t) Fta(t)dt
= F;! / FdG(t)
= 77 (- FG(s) - / G(t)dF)
= ~G(s) + F! / G(r)dF.,
0
11

i X4
1
3

The integrand v that appears in the martingale representation (4.2) is

(4.5)

RIS
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Abstract. The optimal control of a partially observed diffusion is discussed when the

control parameter is present in both the drift and diffusion coefficients. Using a differen-

tiation result of Blagovescenskii and Freidlin, and adapting techniques of Bensoussan, a

stochastic minimum principle is obtained.

Key Words. Optimal control, partially observed diffusion, minimum principle.
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i. Introduction

The adjoint process, and related minimum principles, for partially observed stochastic
control problems have been investigated in several recent papers. See, for example, the
works of Bensoussan (Ref. 1), Haussmann (Ref. 2), Baras, Elliott and Kohlmann {Ref. 3)
and Elliott (Ref. 4). In these papers, however, the control variable occurs in only the
drift coefficient. For a fully observed stochastic control problem Bensoussan (Ref. 5) does
consider the case when the control also appears in the diffusion coefficient. This case is
also discussed in (Ref. 6), and, when the optimal control is Markov, an explicit equation
for the adjoint process is derived.

In this paper we consider a state process, which is only partially observed through a
noisy observation process, and for which the control variable is present in both the drift
and diffusion coeficients. By adapting the techniques of Bensoussan (Ref. 5) an adjoint
process is described and a minimum principle obtained for an optimum control. To the
best of our knowledge, this is the first paper that discqsses this problem for the partially

observed case when the control appears in both the drift and diffusion terms.

2. Dynamics

Suppose that the state of the system is described by a stochastic differential equation,
dmt = f(tﬁxhu)dt + g(t) xt’u)dwh Tt € Rd) Zo = Zg, 0 S t S T. (1)

The conirol parameter u will take values in a compact, convex subset U of some
Euclidean space R*.

We shall assume the following;:
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(Al) =o€ R4 is given.

(A2) f:[0,T) x R x U = R? is continuous, and continuously differentiable with
respect to z,u.

(A3) ¢:[0,7) x R*x U — R?® R" is a continuous, matrix valued function, which is
continuously differentiable with respect to z,u. The columns of g will be denoted
by ¢ for k=1,2,...,n.

(A4) There is a constant K such that
1+ 2D 2wl + 1 fa(t 2, 0)l + 1fu(ty 2, u) S K
lg(t, z, )| + |9-(2, =, w)| + lgu(t, 2, u)| < K.
Suppose the observation process is given by
dys = h(z¢)dt +dvyy, Y €ER™, yp=0, 0<t < T (2)

In the above equations w = (w!,...,w") and v = (v',...,v™) are independent Brow-

nian motions: We also assume:

(A5) h:R?— R™ is Borel measurable, continuously differentiable in z, and for some

constant K,

h(z)] + |he(2)] < K.

Let P denote Wiener measure on C([0,T],R") and p denote Wiener measure on
C([0,T],R™). Consider the space = C([0, T}, R*) x C([0,T], R™) with coordinate func-

tions (wy,y:) and define Wiener measure P on {2 by

P(dw, dy) = P(dw)p(dy).

, -
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Definition 2.1. Write {F}} for the right continuous, complete filtration on C([0, T], R")
generated by F? = o{w,, s < t}. Write Y = {¥}} for the right continuous complete
filtration on C([0, T}, R™) generated by Y = o{ys — y», 0 < r < s < t}. The set of
admissible control functions U will be the Y-predictable functions on [0, 7] x C([0, T], R™)

with values in U. Then
U c L{[0,T)
= {v(t,w') : v(t,w') € L*([0, T] x (C([0,T], R™)), dt x du; RF),
for a.e. t, v(t,-) € L*(C([0, T}, R™),Y:, du, R¥)}.

For u € U, write X ,(z) for the unique strong solution of (1) corresponding to con-
trol u, and with X (z) = z.
Write
4 1 ¢
Zg4(z) = exp ( / h(X; () dyr — 5 / |h(x;§,.(a,-))12dr) (3)

and define a new probability measure P* on 2 by

dP*
dP = Z&T(mo).

Then under P¥, (X¢,(z0), y:) is a solution of (1) and (2).

Cost. We shall suppose the cost is

T
CXgr(ao) + [ r, X8, (a0, )i

We suppose

(46) [C(2)| +|Ca(2)l + |Cra(2)] < K(1 + [2]), for some ¢ < oo

R TR
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(A7) £:[0,T] x R® x U — R is Borel measurable and continuously differentiable
in (z,u). Furthermore £ and its derivatives in z and u satisfy linear growth
conditions in «.

The expected cost if a control u € U is used is, therefore,

J(u) = E* [C’(XS‘,T(%)) + /OTE(r, X&"r(wo),u,‘)dr].

In terms of P, this is

T
J(w) = B[ Z30(20) (C(X31(a0)) + /0 £r, X3,o(a0), ur)dr ) .
Consider the d + 1 dimensional system given by

t t
Xie=ot [ S0 X8+ [ ol X202, u)dW,
St L (4)
Zio= 5+ [ B3HXS(0))dys.

Write

~ X, . r X (z),ur
X:t=<s,.\ f(r)=<f( -2 >>

r, X¢(z),ur 0
g(r)=<g( (2),ur) )

0 Z3r(z, 2)H(X3 ()

Then we can write (4) as

t t —_
Xoy&) =%+ / f(r, X5,0(2), ur)dr + / §(r, Xg,n(2), ur)dW,. (5)
8 s
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As in (Ref. 3) we can assume the Jacobian j:_(_ai)_ s¢ exists for all s, ¢, £ and all w

not in a set of measure zero, and is the solution of

n+m

~ t~ ~ ~ “~ Pty
Br =14 / B, X (8),u) D2 dr + 3 / 3, X2,(8),un) DT (6)
Kj

i=1] v9
Here I'is (d+ 1) x (d + 1) identity matrix. In fact, if the coefficients f and § are C* the
map & — }?;"t(:i) is Ck-1,

Similarly to (Ref. 3) the matrix process H defined by

n-+m

t
B= 1= [ (Rl Fi @ = 3 o900 R 0,7

m-+n
S [ H2 00 B (0,0, (7
1 Ve

exists and I'};‘,t = (5},‘),)"1.
Remark 2.1. Write | X*(&)lle = sup |X3,(Go)l, 1Dl = sup |Dg,), [E¥|. =
0<s<t 0<s<t
sup |HY,|. Then [|X*@o)lr, |D¥|r, |E*||r arein I?, 1< P < co.
0<s<t

We shall suppose there is an optimal control u* € I/

P~

, so that J(u*) < J(u) for all

otheru e U.

Notation 2.1. We shall write X* for X** and ]35‘), for 56‘;, ete.

3. Differentiability

Suppose u* € U is an optimal control. Consider any other control v € U. Then for

6 €0,1]
ug(t) = u*(t) + 6(v(t) —u*(t)) € U
and
I(ug) 2 J(u*). (8)
5
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If the Gateaux derivative J'(u*) of J, as a functional on the Hilbert space L%(0,T],

is well defined, differentiating (8) in 6 implies

(J'(u"), v(t) () 20

forallvel.

LEMMA 3.1. Suppose v € U is such that u}y = u* +6v € U for § € [0,a]. Write X'g,t(:io)

aXo t("’o)

for the trajectory associated with wy. Then My = —5— exists a.s. and is the

o

unique solution of the equation

t
M, = / (Fa(r, K3 1(Bo) )My + Fulr, Koo (o), ulYor)dr
0

n$m

+ Z / O, K3 (80), u2) M, W

4 Z / 59, X3 (50),ul)ond W, )

because forn +1<i<n+m, g()—-

Proof. The result follows from the theorem of Blagovescenskii and Freidlin (Refs. 7-
8) on the differentiability of solutions of stochastic differential equations which depend
on a parameter. In effect the result of (Refs. 7-8) states that, if the coefficients are
differentiable, the equation for the derivative is obtained by differentiation. Considering
the initial condition as a parameter this result gives, in particular, the equation for the

differential or Jacobian as in (6). O

LEMMA 3.2. Write

- n t -
-3 [ B e (1)
=1

P e N — e = e e e e




where fy, §z, §u are as in equation (9). Then M, = 53,tﬁo,t-

Proof. By differentiating, we see the product Eg,tﬁo,, satisfies equation (9).

LEMMA 3.3.
dJ(u* =~ ~* ~ N* ~
‘—c#l oo = E [Cé(Xo,T(:EO))Do,Tno,T
T ~ ~ ~~ -~ ~
+ [ ol X (80, uD) B e + 6 T, (o0), w0 )
0
where
C(X3 1(50)) = Zg 7(20)C(Xg.7(0))
Ur, X5 our) = 25, (20)(r, X (20), u}).
Proof.

o T
I005) = E (GRS 2(a0) + Zn(eo) [ 80, X8 (o), w30

= B[Ot + [ 28,8003 eioner s [ ([ )]

e T

= B[EE @+ [ &R (G0), 3]
y 0

So

dJ(up)

T
S| = B[R cMr+ [ (K (G)uD) M,

=0

+8u(r. X3 (Bo), uiYor)dr

substituting M, = ﬁﬁ,tﬁo,t the result follows.

7
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Consider the right continuous version of the square integrable martingale
o~ ~ ~ T~ ~ ~
Ne= E[Ce(ZirGa) Do+ | 8, %5, (30),un)Bs i 1 6]
0

where G; is the right continuous complete o-field on 2, generated by G? = F? ® Y}

From (Ref. 9) N; has a martingale representation

T ntm o _
N, = E|Cx(Z50(50)) D 1 + / s (r, X (30),up) D3 | + Y / 5idW:
where the 4 are G, predictable processes such that

E[/OT(ﬁ?i)zdr] < 0.

Write

t
o= Ne~ [ Bl X3 (50),up) B
0
Pt = ft(EG,t)—l
~ ~ ~ T~ ~ ~
= B|Ga(%; 2(50)) Dy + / B, %3 (50), w3 D dr | ).
4
THEOREM 3.1.

bl AR Y
aJ(up)

~T n T .T
=EB|[ f, - 5,59()5 F.(s)oud
T P E[,/o Psfu(8)vsds Z./o Dsdz (8)G (s)vﬂs+/0 w(8)vsds

i=1

n T
+ 3 [ AT i)
=1

(11)

LA b




Proof. The product rule gives
T “~ ~
ér -flo,r = /0 fr(D3,3)~lfu(3)vsd3

£y / £,(B5,0) 5 (s)vsdW E / £4(53)140(5)98 (s s

i=1
n+m
+y / 30750 1T — / Bx(s)(D3.,) i, ods
=1
s / (Bg )~ a9 (5)0,58 ds. (12)
=1

However, from Lemma 3.3

T ~‘ ~ -~
= Bler-oz+ [ E(Dii00 +Euls)o)ds)]. (13)
0

dé

6=0

Substituting (12) in (13) and using the definition of p, the result follows. O
Remark 3.1. Write )?;",T(:E) = (X!p(z),Z;r(z,2)) for the solution of (4) using

control u*. Then, by uniqueness,

Zyr(2,2) = 22 r(e,1) (14)

and Z;p(z,1) is the density given by (3).

LEMMA 3.4.
8Z;r(z,2)
——‘%7— = 7} p(z,1) (15)
= Z3 7} (z0,1) 23 1(z, 1) (16)
and
GZ:,T(:”’ 1) * T ah(m:,r) *
T2 = Zip(s, 1) /0 =4 ;o) (17)

L1 e o i




0X{.

where D} . = =

Proof. (15) is immediate from (14). Now

T
Zia(e, ) =1+ [ 2i(e, DHCKE())dyr
Applying the differentiation result of Blagovescenskii and Freidlin (Ref. 7-8) we have

...___aZ*'T(w_’ 1) Taz*,r(m’ 1) * T * oh * *
t az — [ t—-——-ax h(-Xi,r(x))dyr + [ Zt,,.(a:, 1) &_(Xt,r(m))Dt,rdyr'

This equation can be solved by variation of constants to give

OZ;:T(:B’ 1) * Tah * * Tah * * *
LB = Tl )( | G KDDLy~ [ S (DD, BT ()
and the result follows from (2). O

Notation 3.1. Write Zg, for Zg ,(z0,1), Z{p for Zp(z,1),

600 = (O r(eu)Dir + O (oo (|| Dt Do) 237 00K ()

9(r) = (&()D, +40) /t ' g% D}, - dvy ), Z57"4(r)).

Note that the linear growth conditions of £ and £,, the integrability properties of D*

and the boundedness of h and h, imply that

[ ([ von)az:,

is a square integrable martingale.

10
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LEMMA 3.6.
T
po= " |25, (8(8)+ f P(r)dr) | G, (18)

t

Proof.

~ ~ ~ T~ ~ ~
e = B[C:(X; (60 Bip + f B (r, X3, (80), ut) B 1 G
t
* x * * aZ*’ (w) * * *
= B[ (23 70u(X3 2(e0)) D + By — 5t O(X3 2(20)), 22 C(X 1(a0))

82;,(2)
Oz

T
+ [ (83,4005, + 2, ), 23,(r) ) dr | G|
t

Substituting (17) this is

* * * * Tah * *—1 *
= B[250{CelXsr(ea)Dir + CX5rle) (| 5, - Do), 252 C(X3r(a0)) }

+ [Tz;,r{ez(r)p;;, 44 tf % D3y o), 257 40) i 16

T
= B[Z380)+ | Zo,0(r)ar |G, (19)
Now
T T
B[ 25,400 16] = 23.5( || Ziwiryer 16
}H t
T T r
= 5.8[ziz [ vy [ ([ ean)izi, 1]
t t 1
However, the last term is a square integrable (P, §;) martingale, so
T T
B[ 2i(ryir 16] = 75,821z | 2164

=F [zg,T /t Tz/)(r)dr | gt].

11




Substituting in (19).

5= B[Zin (40 + | Csryar) 16

and using Bayes’ formula, this is

= E* [¢(t) + /th,/)(r)dT | gt] 25,

- 5[5, (s + | Csar) 161,

Definition 3.2. The adjoint process will be the process p defined by

E(Z;, Y,
b= 1 v ) e

= B|2r(4(5) + / T¢(r)dr)

B[z, |Y)
LVl g v e

=B [0+ | by

Y,V {z}|ElZ, | Y]

=5 [(¢()+ | W) BLZ;, 1 .

Y,V {:z:}].
As in Bensoussan (Ref. 1), the adjoint process depends on x, which represents the

state of the process at time s. However, z is just a parameter which is integrated out in

the minimum principle of Theorem 3.2.

Returning to the perturbation

up(t) = u*(t) + 8(v(t) — u*(£))

of the optimal control, we have

dJ(ug) 4

: dg le=o = :

i :

i 12 3
3

g

T -3%}- = - ’i""’:ﬁ%‘i;b&* . S e T e o e R L R T e e At T




That is

T DY S _
B[ [ 5ufule)ote) - wr(o))ds - 3° | B0 5)0() — (s

T n T
+ [ A w4 3 / HB3) 5 5)0(s) - w(5))s] 2 0

forall v € U. Now

T R _
B[ [ 6 Au(0)0(e) - u(e))ds - 3 || 28263063 005) - sy

=1

T nooT _
+ [ )0l = (s + 3 / T8 H0(8)(0(5) = w (o))

i=1

T n ) ' 3 n o ‘
=8| /0 B{5ful(s) = 350D () 4 Bu(s) + 3 355,70 (s) | ]
i=1 i=1

< (v(s) - u*(s))ds] > 0. (20)

Therefore, because (20) is true for all v € U, we have for a.e. t and a.s, w,

E[fuul)ole) = w0 (6) ~ 3 5 ()58 ()(0(6) — u(e)

=]

FHale)o(s) = w () + 3555 )15 (5)(u(s) - u*(s) [%]z0 @

=1

forallvel.

From (21)

B[ Au(s)0() = 4*(6) = 530 (61580 (6)0(5) — )

i=1

FE)(0() = u(6) + 3 5iT5, )50 (6)w(s) - w(s) |v,]

i=1

13




= B[B[Z2(0(5)+ [ b))

Ga) Fuls)o(s) - w(s))

—ZE[ZO r(4(s) + / B(r)dr)

G]38()30(s)(w(s) = u*(5))

+ Z5,0( 2577 £u(s))(0(s) = u*(s))

+ 25 Z Zi (D5, 13D ()(0(s) - vt (e)) | ¥
= 5 [(s)+ [ $60) Flo)e(5) -7
-3 (s0+ [ ¥ ) ote) (0
+ L) - 17 (s)
+ 3 2B @0t w0 | %] B[z | 1]

= [(s9+ [ ) BLZi, | G (0)0(5) -7

T
=3 (9 + [ )i Bz | Vg ) (s)0(s) — w*(s)

=1

.

+ 257 8u(3)E(Z5 4 | Yi)(v(s) = u¥(s))
+ 3 2755, B | YD) - @) [ %] 20 (22)
i=1

Write

i) = BlHs) | YoV (o)) bl s = EY6) [ YoV {aBIZG | V)

E(Z;, | Y]
B(Z5, | Ys V {=}]

7. = EByD5,) 7 | VeV {2}]

14
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Define the Hamiltonian by

n . n
H(-'Z'> v,t,P(t)) = Ptfu(t>§7,”) - Zptgg)(t)i’u:)g(t?i»v) + e(t,fé,v) + Z')’t'g(')(t,:i,v).
=1 i=1

THEOREM 3.2. If u* is the optimal control, then a.e. s

R D) CORD)

Y,] >0 a.s.
Proof. From (14), fu(s) and d9(s) (i<n)areY,V {2} measurable. Therefore,
T ~
0< B [()+ [ 90 ) BlZi, | KAl 0(6) - u7(s)

n T ) .
=3 (s + [ 1) Bz, 1K) - ()

+ Z5 7 tu(s)E(Z5,, | Yo)(0(s) = u*(s))

+Y 257 9Dy ) ELZs, | V2189 () (0(s) — u(s))
=1

d
=& {5[(0)+ | (e BLZ3 | V(o) ole) ~ ()
) Z CON [T¢<r>dr)E[za,, | V205 ()6 (s)(w(s) - u(s))

+ 237 L ($)E(Z5,, | Ya](u(s) = u*(s))

+ Z 257 7.(D5, ) ElZg,, | Valg (s)(u(s) — u(s))

Y,V {a}]

v}
= B [pufuls)(v(s) = u(5)) = Y- o3 ()P (5)(0(s) - u*(s)
i=1

+ B 257 u(s) | Yo V {o}] - B(Z5,, | Yi)(0(s) — u*(s))

£ S BUBETD) Y (YIEIZS | Y50(5)0(s) - u(s)
1=1

Y,]
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= B* [, ful(s)(0(s) = u*()) = Y ped ()G (s)(o(s) — u'(s)

+ BIES) YoV (o)) b2 (0(9) = w°6)
+ ZE['Ya(DO s)—l IY V{ }] E[Z [ ?;J \)/,{] }] guz)(s)(v( )_'u ]

i=1

= B [pufuls)os) = w7 (6) — Do (P (a)(0(e) — u7(s)

1=1

+Eu(s)(0(s) —ut(s)) + 27; 3 (5)(v(s) — u*(s)) | 3]

v,|.

So the result follows. O

= B[ (5,0, H)(o(5)
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Filtering and Estimation of a Markov Chain

RoOBERT J. ELLIOTT

Department of Statistics and Applied Probability
University of Alberta
Edmonton, Alberta Canada T6G 2G1

Abstract: A finite state Markov chain is considered. Only certain of its jumps, or
alternatively, only the total number of its jumps, are observed. Based on this information
a recursive estimate for the state of the chain is derived. The novel features are the
representation of certain basic martingales associated with the Markov chain, and the
consequent use of martingale calculus and a product technique, which simplify related
formulae and calculations in the book of Brémaud. The Zakai equation is obtained and a
related control problem presented in separated form.

0. Introduction
A finite state, continuous time Markov chain is considered. The state space is taken
to be, without loss of generality, the set of unit vectors § = {¢;}, ¢; = (0,0,...,1,...,0)*
of RN*1 thus facilitating the use of Jinear algebra. Some basic martingales associated
with the chain are identified and natural filtering problems discussed. These consider,
for example, the estimation of the state of the Markov chain if only the total number of
jumps, or the number of jumps into certain states, are observed. Such formulae can be

obtained by specializing a general result in the book of Brémaud [1]; however, using the

Acknowledgments: Research partially supported by NSERC grant A7964, the Air Force
Office of Scientific Research, United States Air Force, under grant AFOSR-86-0332, and
the U.S. Army Research Office under grant DAALG3-87-0102.




basic martingales and a product technique, our proofs are different and direct. The related
Zakai equation for the unnormalized conditional distribution is then obtained. It is shown

how this can be used to discuss in a separated form the associated optimal control problem.

Full details of the latter can be found in [3].

1. Markov Chain
For 0 <4 < N write e; = (0,...,1,...,0)* for the ¢-th unit (column) vector in RN’H,
and § = {e;, 0 <i < N}. We consider a finite state space, continuous time Markov chain
{Xt}, t >0, defined on a probability space (%2, F, P); without loss of generality the state
space of the chain is taken to be §. Write pf = P(X; = e;). We suppose for some family

of matrices Ay, that p; = (p? yooes pfv )* satisfies the forward Kolmogorov equation

t

At = (a;;(t)), t 20, is, therefore, the family of Q matrices of the process. We suppose

laij(t)] < B for all ¢,7 and ¢ > 0. Because 4; is a Q-matrix

aii(t) ==Y aj(t). (1.2)
i#]

Write $(2, s) for the fundamental transition matrix associated with A, so, with I the
(N +1) x (N +1) identity matrix
dd
Sr(ts) = Ad(ts),  B(s,5) =1 (13)

C—:{%(t, 8) = —®(t,3)4s, B(t,t)=1I.
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Suppose {F};} is the right continuous, complete filtration generated by X. Then for

0<s<tifXg=z€S,
E[X; | Fs] = Esz[X4]
= &(t,s)z.
LEMMA 1.1, M;: Xy - Xy - LtArXr_dr is an {F}} martingale.
Proof. Suppose 0 € s <t. Then

t

E[Mt - Al.g l Fs] = E{Xt - .Xs - Jé ArXr_.dr I FS]
t

=E[Xt ~ X, -/S ArXpdr | Xs],

(because X = X, for each w, except for countably many r),
t
= @(t, S)Xs - Xs - / Ar@(?", S)Xsdr
8

COROLLARY 1.2. By variation of constants
t 1
X1 = 8(t,0)(Xo + /0 &(r,0)"LaM; ).
NotaTiON 1.3. Ifz = (zg,%1,...,aN)" € RN+1 diag z will be the diagonal matrix
with entries from z. For z,y € RN*1 write ¢ - y = o*y for their scalar (inner) product.
Consider 0 €4, < N and ¢ # j. Then

(Xs— -ei)e;des = (Xs— - &;)e;AXs
= (X5~ - 6;’)6;()(3 - Xs-)

=I(Xs— =¢; Xs= ej).

3
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Define the martingale
i t
My = /0 (Xs— - e)efdMs.
(Note the integrand is predictable.) Then
i 3 t
Mty = /(; (Xs_ . ei)e;ng —‘/0 (Xs_ . ei)e;fAsXS_ds.

Wr'ting Ny(i, j) for the number of jumps of the process X from e; to e; up to time ¢ this

t
= Ny(i,5) - /0 I(Xs— = e;)aji(s)ds

14
= Ny(i,7) — ‘/0 I(Xs = ei)aj,'(S)dS

because X3 = X for each w, except for countably many s. Therefore, for i # j
t Iy
Mi(i) = [ 10 = eidajite)ds + 14

For a fixed j, 0 < j < N, write Ny(j) for the number of jumps into state e; up to

time £. Then
N n _
Ni(j) = ZNt(i,j) = Z/O I(Xs = ;)az;(s)ds + Mtj
=1 =1
i i)
where

. N
1
M{:ZMtJ.
i=1
1#]

Finally, write N; for the total number of jumps (of any kind) of the process X up to time .

Then
N N N 4
Ne= YN = Y Y [ 1% = caji(e)ds + @
Jj=1

1=1j=1
i#i




[P S

where @ is the martingale
n .
J
> .
j=1
However, from (1.2)

aji(s) = Z a]l(s
J#z

SO

N
_é: /0 I(Xs = e;)ag(s)ds + Q. (1.4)

2._Filtering
We now consider the recursive estimation of the state X; given the number of jumps
which have occured to time ¢. Other counting processes, such as N¢(z,), N¢(j) could be

considered as the observation process; for details cee [3].

NoTaTION 2.1. Write

h(s,Xs) = ZI(XS = €;)a;i(s)
1=1

and a(s) for the vector (—agg(s),...,—ayn(s))*. Then h(s,X;) = a(s) - Xs. We shall

further abbreviate h(s, Xs) as h(s).

We have, therefore, a SIGNAL process

i
Xt =X0+AA3X3_ds+M3 (2.1)
and an OBSERVATION process
t
Ny = /0 h(s)ds + Qr. (22)
5
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Write {Y;} for the right continuous complete filtration generated by N, so ¥; C Fy
for all t. If {¢;}, ¢ > 0, is any process write ¢ for the Y-optional projection of ¢.
Then ¢; = E[¢; | ;] a.s. Similarly, write ;5 for the Y-predictable projection of ¢. Then
;S = E[¢; | Y3~] a.s. From Theorem 6.48 of [2], for almost all w, ¢y = ¢:>t except for

countably many values of ¢. Therefore

t: t,~
5 h(‘l‘,Xr)dT = ‘/(; h(T‘,Xr)dT

tl\
= / h(r, Xp-)dr.
0

Write py = X; = E[X; | ¥i] so po = E[Xg] = pg say. Now A(r) = a(r) - Xy so h(r) =
a(r) - pr.
For the vector h(r)X, = diag a(r)- X we have h(:)TXr = diag a(r)-pr. The innovation

process associated with the observations is

tA
=N; — /(; h(r—)dr.

Application of Fubini’s theorem shows that Q is a {¥;} martingale. Therefore,

t, ~
Ny = [) h(r=)dr + Q. (2.3)

Similarly, Fubini’s theorem shows that the process
— t
My :=pt —pp — /0 Asps—ds

is a square integrable {¥;}-martingale. Consequently, M can be represented as 2 stochastic

—_ t -
M, = ]O 7edGip.

6
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Therefore,
¢ t
E[X¢ | Yl =5t =po +/0 Arpr—dr + /0 7rdQr.
The problem now is to find an explicit from for ~.

THEOREM 2.2.
= 1(B(r~) - a(r) # 0)(B(r~) - a(r)) ™" {diag a(r) - 5(r~)
= (p(r=) - a(r))p(r—) + Arp(r-)}.
Proof. The product p; Ny is calculated two ways. First consider
t
X;N; = /0 Xy (dQr + h(r—)dr)
t

+/0 Np_(ArXp—dr + dMy) + [X, N];.

Now X and N jump at the same times, at which AN =1, so

[X,N= Y AX;ANy= Y AXy=X;-X
0<r<t 0<r<t

t
- /O ApXp_dr + M.

t
That is, (X,N); = / ApXp_dr so
0

t
XyNy = /0 (Xp—h(r=) + Np—ArXp— + Ap Xy )dr + py

where p is an {F;} martingale.

Taking the Y-optional projection of ¢ach side of (2.5)

t
Ny = [ (g alr) o+ N e+ Asbr-)ir + H]

(2.4)

(2.5)

(2.6)




where H? is a square-integrable Y martingale. However, from (2.3) and (2.4)

t ¢ t
PNy = /0 pr_h(r=)dr + /0 pr_dBr + /0 Arr_Ny_dr

t ~
+ ./0 ¥rNp—~dQ@r + [, N];.

Now
[B,Nlg= Y AprANp= ) ypdNy
0<r<t o<r<t
t t t
- / yrdNp = / wdGr + / h(r=)dr.
0 0 0
Therefore,

t ~ ~
e = [ r-hlr=) + ArprNo (s )+ B, (27

where H? is a square-integrable Y martingale. The bounded variation process in (2.6) and

(2.7) must be equal, so

diag a(r)  r— + Np— Arr_ + Arfr_
= pr—h(r=) + Arpr—Np— +7rh(r-).
Recalling A(r—) = a(r) - pr— we have
Tr = Lpazo)(a(r) - B(r—)) "} {diag a(r) - pp—

= (a(r) - 8(r=))B(r-) + Arp(r—)}. (2.8)

Note for any set B € Y

E[15 /8 th,.] = B[I5 /8 tiz(r—)dr]

- e xy—
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5o 7r can be taken to be 0 on any set where a(r—) = 0.

REMARKS 2.3. We have, therefore, that py = E[X; | Y}] is given by the equation

t t
bt =pg + /0 Arpr—dr + /0 7(dNr — a(r) - pr—dr)

where 7y ig given by (2.8). The disadvantage of this equation is that + involves the inverse

factor (a(r) - pp—) L.

3. The Zakai Equation
Suppose there is a constant & > 0 such that —a;(r) > & for all 7 and r > 0. Then

h(r)~1 = (a(r) - X»)~1 < k™! for all » > 0. Define the martingale A by

t
At=1+ /0 Ar—(h(r=)"1 = 1)dQ, (3.1)

and introduce a new probability measure Pj on (, F') by

én

E[Zp | B = A

Then it can be shown that under Py the process V¢ is a standard Poisson process, and in

particular Q; = N; — ¢ is a martingale. Conversely we can define the (P, F) martingale
— t—— ———
A =1+ /0 R, (h(r=) — 1)d0.. (3.2)

Then A¢A; = 1. To obtain the Zakai equation we take P; as the reference probability
measure and compute expectations under Py. Write IT(A;) for the Y-optional projection

of A under Pj. Then for each t > 0, II(A;) = Ei[A; | Yi] as. It can be shown that

W 2 DB 1A
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M(Ay) = 1+ /0 Ard@, where Ap = II(Ap_)(h(r—) —1). By Baye’s rule, for any F}-

measurable random variable ¢
bt = Elg | Vil = E1[Aed | Y3/ By (B¢ | Y3).

Write 0(¢); = E1[As¢ | Yz]. Then o(Xy) = E1[At Xy | Y] = ¢, say, and o(1) = ().
Now ¢; is an unnormalized conditional distribution of X; given Y}, because py = E[X} |

Y;] = g¢/TI(A;). Calculating the product II(A;)p; we obtain the Zakai equation for g¢:

ol
gt = po + /0 Argr—dr

t
+ /0 (diag a(r) — I + Ar)gr—dQ;. (3-3)

This equation is linear in ¢ and the inverse (a - f))"l has disappeared.

4. Optimal Control

The optimal control of a Markov chain when, say, only the total number of jumps is
observed, can be discussed using the Zakai equation (3.3). We see below that this presents
the problem in a separated form. We suppose the family of @-matrix generators As(u)

depend on a control parameter u € U (a compact, convex subset of some RF ). Write
a(sau) = (_GOO(S’U), veey G,NN(S,U))*
and h(s,u) = a(s,u) - XJ where the state process X* is now described by dynamucs

i
X¥ =X+ /0 Ar(w)XE_dr + M}

10
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for 0 < ¢t £ T. The set [ of admissible controls is the set of {¥;}-predictable processes

with values in U.

Write P; for the probability measure under which N; is a standard Poisson process.

Then Q4 = N; —t is a martingale under P;. For each u € U we define
— b =
A =14 /0 K (h(r—,u) — 1)d0,.
H(X;l) is the Y-optional projection of A under P; and with
o(X}) = a(u) = By Ay X} | V3]
we have as in Section 3 that the unnormalized distribution satisfies:
gt(u) = (A )pr(w).

Write By(u) = (diag a(t,u)—I+A¢(u)). Then for each u € U the unnormalized distribution

is given by the Zakai equation

¢ t _
() =0+ [ Ar(war—(w)du+ [ Br(w)ar-(u)dG,
CosT: A function on the state space S is represented by a vector
£=(y,...,0n)* € RN*L,

We consider for simplicity just a terminal cost so the control problem is that of choosing
u € U so the expected cost
J(u) = B[(¢, XT)]

11
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is minimized. Now
J(v) = Ey[AT(6, X3))
= Ey[(¢,A7X})]
= By[(¢, B [AT X} | Yy])]
= Ey[(6, ¢f)].

The control problem has, therefore, been formulated in separated form: find v € I/ which
minimizes

J(u) = Eq[(¢,gp)]

where for 0 <t < T, ¢} is given by
t t _
(@) =90 + [ Aar—(dr+ [ Br(u)ar-(u)dQs.

Under P;, Q; = Ny —tis a (P;,Y) martingale. A novel feature of this partially observed
control problem is that there is correlation between the state and observation processes
which leads to the presence of the control u in the “diffusion” coefficient B.

A minimum principle, and an equation for the adjoint process, for this problem are

derived in {3].
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Abstract. A control problem is considered where the coeflicients of the linear dynamics
are functions of a noisily observed Markov chain. The approximation introduced is to
consider these coefficients as functions of the filtered estimate of the state of the chain;

this gives rise to a finite dimensional conditional Kalman filter. A minimum principle and

a new equation for an adjoint process are obtained.

Key Words. Hybrid control, filtering, minimum principle, adjoint process, separation

principle.
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1. INTRODUCTION.

The filtering problem, where the state and observation processes are linear equations
with Gaussian noise, has as its solution the celebrated result of Kalman. For the related
partially observed, linear quadratic control problem the separation principle applies, and
the optimal control can be described explicitly as a function of the filtered state estimate.

Suppose, however, the coefficients in the linear dynamics of the state process are
functions of a noisily observed Markov chain. Both the filtering problem, and related
quadratic control problem, are now nonlinear, and explicit solutions are either difficult
to find or of little practical use. The approximation proposed below is to consider the
coefficients in the linear dynamics to be functions of the filtered estimate of the Markov
chain. In this way a conditional Kalman filter can be written down, These dynamics lead
us to considsr in Section 3 a conditionally linear, Gaussian control problem. By adapting
techniques of Bensoussan, Ref. 1, a minimum principle and a new equation for the adjoint
process are obtained.

Other work discussing similar situations and approximations includes the papers,

Refs. 2-6 and the recent book, Ref. 7 by Mariton.

2. DYNAMICS.

Consider a system whose state is described by two quantities, a vector z € R? and a
component ¢ which can take a finite number of values from a set § = {01,02,...,0N}.

(z can be thought of as describing the location, velocity etc., of an object; o might then

describe its orientation or some other operating characteristic.)




Let ¢; be the function on S described by
1 if o=0y
$i(o) = { ‘
0 if o#o0;
and write ¢(o) for the column vector (¢1(0),...,¢n(0))". ¢ is, therefore, a bijection onto
the set of unit column vectors {ej,...,en} of R, where e; = (0,...,0,1,0,...,0)".
If o evolves as a Markov process on S we can, without loss of generality, consider the
corresponding process described by ¢ evolving on the set {e;,...,en}. Write ¢, for the
state of this process at time ¢ and p; = E[¢:]. Suppose the generator of the Markov chain

is the @ matrix Q(2) = (¢i,(t)), 1 < t,5 £ N, so that p; satisfies the forward equation

d

It follows from (1) that on the family of o-fields generated by ¢: the process M, is a

martingale, where
t
M= = b [ Qs)puds. (@)
0

Suppose ¢ is observed only through the noisy process z, where

zt=/(;1"(s,¢3)ds+ut. (3)

Here v is a Brownian motion independent of M. Write {Z;} for the right continuous
complete family of o-fields generated by z and ¢, for the Z-optional projection of ¢, so

that

&! = E[(I/)g Za] 3.8,

1 *3

(For a discussion of optional projections see Elliott [4]. Optional projections take care of

measurability in both ¢ and w; conditional expectations only concern measurability in w.)




Write A(s) for the vector (I'(s,e1),...,I'(s,en)) and diag A(s) for the diagonal matrix
with diagonal A(s).
With an innovation process #; given by di = dz; — (A(t), §,)dt it is shown in, for

example Ref. 8, that the equation for the filtered estimate ¢ is

- " t A ¢ P "

bo=dot [[QIbds+ [ (ding AG) = (M), B (@
Here (, ) denotes the inner product in RV and I is the N » N identity matrix. Equation
(4) provides a recursive expression for the best least squares estimate é of ¢ given the

observations z.

Suppose now the z component of the state is described by the equation
dmt = A(q&t)xtdt + ptd¢t + B(¢t)dwt. (5)

Here z € R?, w; = (w},...,w}) is an n-dimensional Brownian motion independent of M

and v, and A(¢;), B(¢:) and p; are, respectively, d X d, d x n and d x N matrices. Note

that

N
A(ge) =) Aleies, 61)

i=1
N
B(¢:) =) B(ei)(eir $1)-
i=1
Suppose the & process is observed through the observations of y, where
dyt = H:Dtdt + Gdﬂt (6)

Herey € R?, B, =(B,...,B") is an m-dimer sicnal Brownian motion independent of M,
v and w and H, (resp. G), is a p X d (resp. - .¢: singular p X m) matrix.

5
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Now the y observations also provide information about ¢, so that altogether we have

the states = and ¢ given by (5) and

t
be = do + /0 O(s)bsds + My, (7)

with observations given by (3) and (6). Write {¥,} for the right continuous, complete

filtration generated by y and z, and denote by a bar the Y -optional projection of a process

so that, for example,
(zt = E[¢t '?t] a.s.

Define the H-innovation processes v*, §* by

dv} = dzy — (A(t), ¢¢)dt
dBr = G (dy: — Hi,dt).

For vectors z = (z1,...,2m) € R™ and y = (y1,...,¥n) € R*,  ® y will denote their
tensor product, which can be identified with the m X n matrix (a.;), aij = z;y;. Then

the filtered estimate o (Zt) is given by
¢

)~ (T ()

+ (oo 8 e, B ) - b o (B3 (80,30) (% 1) (1),

This is a nonlinear equation. However, the approximation we shall make is to suppose
that most of our information about ¢ comes from the observations of 2z and that we can
replace ¢ by ¢ in (5), where ¢ is given by (4). Note that s independent of w and . We

can, therefore, state the following result:

— A T AU i s * 0 Sy T At T
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PRroOPOSITION 2.1. Suppose the state z, is approximated by %, where
dZ = A($e)Fedt + pedde + B(Be)dw. (8)
Here ¢ is given by (4). Suppose & is observed through the process § where
dijy = Hz,dt + Gdp,. (9)

Write {Y:} for the right continucus, comnplete filtration generated by § and & for the

Y -optional projection of z, so that &; = E{z, | Y] a.s. Then

déy = A($1)ddt + pedde + PLH(GG) ™ dB, (10)
Lo = EmO)
where
G- dB. = dy, — H,dt (11)

and P, is the matrix solution of the Riccati equation

P, = B($,)B!¢,) — PH'(GG')"*HP, + A($;)P, + P.A(,), (12)

Py = cov zy.

Proof. Because ¢ is independent of w and B, ¢.(w) appears as a parameter in (10),
so the usual Kalman flter formula 2 ions {4}, {10}, (11) and (12) therefore,

give a finite dimensional filter for Z,, which is a conditionally Gaussian random variable

given $ and Y,.

e m——t T,
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Note that

N
A(de) = Aleiei, de)

=1

N
B($) =Y _ Ble:)(ei, br)-

i=1

REMARKS 2.3.
d(@¢ ~ §0) = (A(fe): — A($1)3:)dt
+piQe(¢t — $r)dt + (z® Hz — 5@ HZ)G ™ d;
+(z ® (A®), ¢) — & @ (A(t), 60))dv;
+ P,H(GG"YdB,.
Therefore, with ¢r denoting the trace of a matrix,
d(Zs — &:)° = AFt — &4)d(&¢ — £4)
+ir(z@He - i@ HZ)(G'G) ' (Hz @z ~ HI ® 3)dt
+tr((AQ), 9) ® 7 — (A(t), §) @ 7) (z ® (A1), 8) — 2 ® (A(t), ))dt
+trP.H(GG')2H'P! - dt
+trP,H(GG')™!-G'(z® Hz — z ® HZ)dt.

Taking expectations the martingale terms disappear and, under integrability or bounded-
ness conditions on the coefficient matrices, an estimate of order o(t) for E(Z: — £;)% can

be obtained. However, this does not appear too useful.




3. HYBRID CONTROL.

Suppose the state equation for £ now contains a control term, so that
d:ct = A(¢t)$¢dt + p¢d¢t + Cﬂl(t)d‘t + B(¢t)dwt. (13)

The observation process is again y, where
dys = Hzdt + Gdp,. (14)

Assume the control parameter u takes values in some space R¥ and the admissible control
functions are those which are predictable with respect to the right continuous, complete
filiration generated by y and $. C.is ad x k matrix.

Suppose the control {u:} is to be chosen to minimize the cost
e T
J(u¥=E 5./ (ziDyzy + uRyuy)dt + :z:frFmT] (15)
0

Here Dy, R; and F are matrices of appropriate dimensions and R, is non-singular. Then
(7), (3), (13), (14) and (15) describe a nonlinear partially observed stochastic control
problem whose solution is in general difficult. To obtain a related completely observed
problem the approximation we propose is that ¢, is replaced by its fiitered estimate ¢, in

(13) giving a process Z, where
dz; = A(de)Fedt + peddy + Cru(t)dt + B(S¢)dwy. (16)
The observation process is now j, where




and the admissible controls are the predictable functions with respect to the right contin-
uous, complete filtrations generated by § and 2.

The cost is taken to be
T
Ju) = B / (8,Deéo+ ujReu)dt + £y F]. (18)
0

Equations (16), (17) and (18) describe a partially ovserved, linear, quadratic Gaussian
control problem which is parametrized by ¢, a process which is independent of w and S.
However, we cannot apply the separation principle, as in Ref. 9, because the coefficients in
(16) are functions of ¢. The usual form of the separation principle involves the solution of
a Riccati equation solved backwards from the final time T, and we do not know the future
values of ¢. We, therefore, proceed as follows to derive a minimum principle satisfied by
an optimal control. We are in effect considering a completely observed optimal control

problem with state variables ¢ and #, where 4 is given by

be=do+ [Q)s + [ (6100, (19)
0 0
and
¢ t t t
. Y . SN
:vt—mo+‘/(;A(¢,/.c,d3+‘/0 p,d¢3+/(;03u3ds+/(;PsH(GG) dps. (20)

Here II(s) = diag A(s) — (A(s), $s)] and mg = Ezo. Note from (12) that the co-
variance P, depends on ¢ In terms of # and P the cost corresponding to control {u;} is,

(see Ref. 9),
AT
J(u) = E[ / (2 D4y + v Ryus)dt
0

T
+ & Fip + / tr(PDi)dt + r(PrF)
0
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The last two terms do not depend on the control, so we shall consider a probiem with

dynamics given by (19) and (20), and a cost corresponding to a control u given by
T
0

Write {¥;} for the right continuous filtration generated by § and 2. Write Li[0,T] =
{u(t,w) € L*([0,T) x Q; dt x dP, R*) such that for a.e. ¢, u(t,.) € L(Q,V,, P,R*)}.
Assume U is a compact, convex subset of R¥. Then the set of admissible controls is the

set

U={ueILi0,T): u(t,w) € U ae. as.}.

Suppose there is an optimal control v*. We shall consider perturbations of u* of the form

ug(t) = u*(t) + (v(t) — u*(t)) where v is any other admissible control and 4 € [0,1]. Then
J(ug) 2 J(u").

Following and simplifying techniques of Bensoussan, Ref. 1, our minimum principle is
obtained by investigating the Gateaux derivative of J as a functional on the Hilbert space

L%[0,T). Write £* for the trajectory corresponding to the optimal «*. Then
di} = A($:)Etdt + pedde + Crurdt + PH(GG') ' df.

Given any sample path ¢, ¢; will be considered as a time varying parameter. Write

&(8,1,s) for the matrix solution of ihe equation
d . - s
2 8(d,t,5) = BBt )

with initial condition ®(¢,s,s) = I.

11




LEMMA 3.1. Suppose v € U is such that u}j = u* + 6v € U for § € [0,a]. Write 2° for
=0
the solution of (20) associated with uj. Then ¢, = %%’-‘- , exists a.s. and

t
P = 8(4,1,0) / &(3,s,0)"1C,v,ds. (22)
0
Proof.

t t t t
&, = %o + / A($s)25ds + / psdps + f Cs(us + Ov,)ds + / P,H(GG) 'dB,. (23)
0 0 0 0

From the result of Blagovescenskii and Freidlin, Ref. 10, on the differentiability of solutions
of stochastic differential equations with respect to a parameter (23) can be differentiated
to give
t t
Yy = J/ A(d,)z,ds +/ Cyv,ds. (24)
0 0

The solution of (24) is then given by (22). O

NOTATION 3.2. Consider the martingale
T ~ ~
M, = B2 / 8D, 8(8,5,0)ds + 264F%(3,T,0) | F)]
0

and write

t
£ = M, — 2/ 2 D,®(, s,0)ds
0
pe =& - ®($,s,0)7 (25)

¢
No,t = / ®(9,,0)"1Cyvsds.
0
Then there are square integrable processes v and A such that the martingale M has a

representation as a stochastic integral

T 14 t
Mt=E[2 / a;'D,q?(qs,s,O)ds+25;*T'F@(¢,T,0)] + / o dfs + / Aodis.
0 0 0

12




ProrosiTION 3.3.

dJ(uj)

T
—_ */
p7; = E[/O (psCovs + 2u} Rsvs)ds].

6=0

Proof.

T
J(u}) = E[ /0 (89 Do + ujyl Ryul,)ds + x%ﬁ’x%}

Therefore, differentiating we see

dJ (us T
_&0_) = E[2/ (25 Dyzy + u;"Rsvs)ds + 2:?:1'_}5[*’27*] . (26)
do §=0 0

Using the above notation

¢t = @(‘57 t, 0)770,t
Er =285 F&(4,T,0)
SO

§rno,r = 287 Fypr

"

T
=/0 §3<I>(¢,s,0)"]03v3ds—2/ :%;'Dsé(dg,s,O)no,sds

0

T T
+ / 7-9770,3(1:83 + / ’\sﬂo,sdﬁs-
0 0

Substituting in (26)

: T T .
= E|érno,1 + 2/ 23'Dy®(9,s,0)m0,5ds + 2/ hu:'RsvsdsJ
: 0

=0 0

dJ(up)
de

T T
=E / £:8(4,5,0)"1Cv,ds + 2/ u:'R,vsds]
LJo 0

. pT
=FE / (p303v3+2u:'R3v3)ds].
LJo

13




O
Now take v to be of the form v — u* so that uy = u* + 0(v — u*) € U. Applying

proposition 3.3 to J(ug) we have the following result.

COROLLARY 3.4. The optimal control satisfles the minimum principle

psCst’s + 2u} Ryuy = néi(r}(p,csv +2u¥'R,v) a.e. as.
v

Proof. u* is optimal so Q%Qla—o > 0, that is for any other admissible control v
T
E [ / (psCo(uy — vs) + 2ul Ry(uj — vs))ds] > 0.
0

v can equal u* except on an arbitrary set of the form A X [s,s + k], A € F,. Therefore,

a.e. dt and a.s. dP,

psCs(ul —vy) + 2u} Ry(u} — vg) 2 0,

where the adjoint variable p is given by (25). O
REMARKS 3.5. From Ref. 11 we know the optimal control u* is feedback, in the sense
that at time ¢ it is a function of the states ; and <;S¢. However, to avoid derivatives of u*
we suppose u* always follows the trajectories of #* and 3, even if these trajectories are
perturbed. By the Markov property we, therefore, have that p, is a function of = &, and
¢ = ;. Writing & = @(qg,t,O) and y = 2/(;t:%:’D3<I>(q§,s,O)ds we have that ¥(¢,2,y,®) =
pi(z, ¢) - ® +y = M, a martingale.

If we write down the Ito expansion of ¥ the sum of the terms integrated with respect
to time must be zero. After division by ® we have the following equation satisfied by the
adjoint process p = p(t,z, ).

14




2 2
PROPOSITION 3.6. Denote the Hessian of p with respect to z (resp. ¢) by %}-@ (resp. gﬁ)

and write

Iy = PtH(GGI)_l + ng(t)g{;t
= I1(t):.

and tr(T} 25 6 & T'y) (resp. tr(A} -a—ﬁ A.)) for the vector with components tr(T', pi I'y)

t &z 2
(resp. tr(A, ad)z L Ay)).

Then

% 10 A+ 2 - (AP + 0Qdc+ Cd)

d%p
¢ Q¢t+ t(rtagr‘t).*- t(Ata¢2A) O

with terminal condition p(T,z,$) = 2z F.
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THE ADJOINT PROCESS FOR A
PARTIALLY OBSERVED MARKOV CHAIN

Robert J. Elliott
Department of Statistics and Applied Probability
University of Alberta
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1. Introduction

A finite state space Markov chain is considered. Without loss of generality its state
space can be taken to be the set of unit basis vectors of RN, On the basis of knowing only
the total number of jumps a control problem is discussed in ‘separated’ form. That is,
the Zakai equation for its unnormalized distribution is taken as describing the state of the
process. This is a linear, vector equation driven by a standard Poisson process in which the
control variable also appears in the ‘diffusion’ coefficient multiplying the noise term. The
controls, similar to those employed by Bismut [2] and Kushner [4], are in the ‘stochastic
open loop’ form. By adapting techniques of Bensoussan [1] and calculating a Géteaux
derivative, the minimum principle satisfied by an optimal control is obtained. Finally,
when the optimal control is Markov, the integrand in the martingale representation can
be obtained explicitly, and new forward and backward equations satisfied by the adjoint

process derived. A full treatment can be found in (3].

2. Dynamics
Without loss of generality, the state space of a finite state Markov chain can be
identified with the set S = {e;} of unit vectors ¢; = (0,0,...,1,...,0)* of RY. Assume,
therefore, that Xy, ¢ > 0, is a Markov process defined on a probability space (£, F, P)
with state space S = {ey,...,ey}. Write pg = P(X; =¢;), 1 <i< N, and suppose for

Acknowledgments: Research partially supported by NSERC grant A7964, the Air Force
Office of Scientific Research United States Air Force, under contract AFOSR-86-0332, and
the U.S. Army Research Office under contract DAAL03-87-0102.
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some family of matrices A¢(u) that p; = (ptl, vy pCN )* satisfies the forward Kolmogorov

equation

dpt

Here U, the set of control values, is a compact convex subset of some Euclidean space Rk,
Take 0 < ¢ < T and suppose A¢(u) is measurable on [0,T] X U and continuously fferen-
tiable in u.

The set U of admissible control functions is the set of U valued functions which depend
only on the knowledge of previous jump times. That is, if T7,T9,... are the jump times
of X and T, <t < Tp41, then u € U is a function only if Ty,...,T, and ¢. It is easily
checked that the process M{* is a martingale, where

t
M =X} - Xg - / Ar(u)X} _dr.
0

Write Ny for the total number of jumps to time ¢. We shall suppose our only knowledge
of the Markov chain X comes from observing N. Y = {}}} is the right continuous,

complete filtration generated by N. For u € U set

a(s,u) = (—a11(s,u),..., —ayy(s,u))*

and h(s,u) = a(s,u) - X
The hat " will denote the Y -optional projection, so that ps(u) := X¥ = E[X¥ | ¥;] a.s.

and A(s,u) = a(s,u) - ps(u). Now N can be written

t t, ~
Ny = ,/{) h(s,u)ds + Q} = ‘[) h(s,u)ds + QF,

where Q% is a (Y, P) martingale.

Note that because X* and N jump at the same time the noises in the state process
X" and observation process N are correlated.

Cost: A real function on the state space S = {ej,...,en} is given by a vector
£=({,...,2y). Write (£,z) = £* - z for the inner product on RN,

The control problem will be that of choosing u € U so the expected cost J(u) =
E[(¢, X})] is minimized.




Suppose there is a k > 0 such that —a;;(s,u) >k forall,alls € [0,T1 and allu € U.
Then h(s,u)"! = (a(s,u) - X&)~! < k™1, For u € U consider the martingale A% defined
by . |

AF =14 /0 A¥_(h(r—, )"t - 1)dQE.

Then, consider the new measure Py on (2, F') given by E[%%’- | Fy] = A¥. It can then be
shown that under P, the process Ny is a standard Poisson process; in particular Q; = N;—t
is a martingale.

The inverse of A} is the process A%, a (Py, F') martingale given by the equation
t
R =1+ [ T (o) ~ DTS-

Write II(A;) for the Y-optional projection of A" under measure Py and consider the
unnormalized conditional expectation of X given by g;(u) := Ey[A; X; | ¥;]. From Bayes’
rule g:(u) = T(AY)1(u), and with By(u) = (diag(a(t, w)) + A¢(w) — ), gs(u) is given by
the Zakai equation

it i
a(w) = po + ]0 Ar(w)gr—(u)dr + [0 Br(w)gr—(u)dG.

Furthermore, the cost can be written

J(u) = Eu[(¢, ap)]- (1)

The partially observed control problem has, therefore, been formulated in separated form:
find v € U which minimizes J(u) given by (1), where g is given by the Zakai equation in
which @Q; = Ny —t and N; is a standard Poisson process.

3. Minimum Principle
Suppose, therefore, P; is a probability measure under which N is a standard Poisson

process, and for u € U consider g;(u) € RY defined by

t t —
ai(u) = po + /0 Ar(w)gr—(u)dr + /0 Br(w)gr—()dy.




The cost corresponding to u € U is J(u) = Eq[(¢, ¢%)]-

For u.€ U write ®%(£, s) for the solution of the matrix equation
d®®(t,s) = Ag(u)@%(t—, s)dt + By(u)®¥(t—, s)(dNy — dt)

with initial condition ®%(s,s) = I.

Furthermore, for u € U consider the matrix ¥%(¢, s) defined by
t t _
P, s)=1- / T (r—,s)Ar(u)dr — / U%(r—, s)Bp(u)dQ,
0 0
t 2
+[) ‘I’u(r—,s)B,.(u)(I+Br(u))—ldNr.

Then it is easily checked that
dU(¢,s)V%(t,s) = L.

Suppose there is an optimal control u* € U. Write ¢* for q"‘*, ®* for @“*, etc. Consider

any other control v € U. Then for 6 € [0, 1],
uglt) = w*(2) + 6(0(2) - u(®)) € L.

Because U C R is compact, the set U of admissible controls can be considered as a

subset of the Hilbert space
H=ILQx[0,T]: R¥).

Now

J(ug) 2 J(u). (2)

Therefore, if the Gateaux derivative J/(u*) of J, as a functional on the Hilbert space H,
is well defined, differentiating (2) in 4, and evaluating at 8 = 0, implies

(I ("), o(t) —u* (1)) 2 0

forallveU.




LEMMA 3.1. Suppose v € U is such that ujy = u* 4+ 6v € U for 8 € [0,a]. Write g;(8) for

the solution g(up) of the Zakai equation. Then z; = %@IO—O exists and is the unique
solution of the equation

t .54 t
z =/0 (%(r,u*))vrqﬁ_dr+/0Ar(u*)zr_dr

¢ 3B - t —
+/(; (—é;(r,u*))vrq:—dQT+£Br(u*)zr'"dQ"" (3)
Proof.

t
2(8) =po + /O Arlu* + 80)g,—(8)dr

t
+ /0 Bp(u* + 60)g,— (6)dQ.

The stochastic integrals are defined pathwise, so differentiating under the integrals gives

the result. Comparing (3) and the equation for $* we have the following result by variation

of constants.

LEMMA 3.2. Write
¢ dA
_ *( * *
70,¢ _L 4 (T‘ ’0)(611 (ryu ))vrq'r—dr
t OB J
* * *
+ ‘/(; v (7""10)(8u (r,u ))v"‘qr—er

- /t\Il*(r—- 0)(I+Br(u*))'-1Br(u*)(?£(r u*))vrq* dNr. (4)
Jo ’ Ou’ =
Then z; = *(%, 0)770,1"
Proof. Using the differentiation rule
t t
&*(t,0)mo s = /0 3L . dp+ /0 d®*n— + (&, 7);.

Because ®* U* = I, therefore

t0A
* _ oA * *
¢ (t;o)ﬂo,t '—/(; (au (ryu ))UTQT—dr




t 0B _
+ /0 (—%(r,u*))vrqﬁ__er
t _ OB
- /0 (14 Br(u*) " Bo(w) (S0, orgt_dly
t t _
+ /(; Ar(u)@*(r—,O)no’r_dr+ /0 Br(u)@*(r—,O)nO’,._dQ,.
t 8B, .
+ /0 Br(u)(—a—u-(r,u ))vrq,.__dNr

- ‘/:Br(u)(I + Br(“*))_lBr(u*) (_aa'_f,(r,u*)) 'Urq:_dNr.

Now the dN integrals sum to 0, showing that &*n satisfies the same equation (4) as z.

Consequently, by uniqueness, the result follows.

COROLLARY 3.3. %(u;)

pep = E1l(6, @*(T, O)no,T)]-
Proof. J(ug) = E1[{¢,¢:(8)))- The result follows from lemmas 3.1 and 3.2.

NOTATION 3.4. Write ®*(T,0) for the transpose of ®*(T,0) and consider the square

integrable, vector martingale
My := By[®*(T,0)¢| ¥4).
Then M; has a representation as a stochastic integral
! P
M= By (/0 + [ vl
where 7 is a predictable RN+ valued process such that

T 2
‘/0 Bi[yr]dr < oo.

Under s Markov hypothesis 7 will be explicitly determined beiow.

DEFINITION 3.5. The adjoint process is

pe := U*(1,0) M.




THEOREM 3.6.

GD) o= [ mrl{orms { (BB By (L) onai

-1/0B -
+ (1 W=, 000 + Brw*) ™ (G () Jorgt )] dr (3)
Proof. First note that
T
0tz m7) = [ (e, #,0) (G0 g

+/(;T<Mr-i‘1'*(r )( (ryu ))”qu—>dQ’f‘
T * *yy—1
_ /0 (M, @*(r—,0)(L + Br(u*))
X B,.(J)(%—f-(r,u*))vrq:_)dNr
+/(;T<’Yr,770,r—->d§r
T (L) W
T " *yy—1
- /0 (10, @*(r=,0)(T + Br(w*))

0B
X Br(u*)("a—z“‘(?, U*))vrq:_>dNr. (6)
Taking expectations under P, we have

=0 =B [(& Q*(T) O)UO,T)]
= E1[(&%(T,0)'¢,m0,7)) = E1[(Mp,m0,7))-

Combining the last two terms in (6) and using the fact that N; —¢ is a P} martingale, this

T
= [ B1[(or- (Gt ot

- <Pr-—-,(I+ Br(U*))_lBT(U*)(%%(T’ u*))vrq,"f__>

do

is

+ (e, W=, OO+ Br(w) ™ (G ) g .

WA L




O
Now consider perturbations of u* of the form ug(t) = u*(t)+0(v(t)—u(t)) for €0, 1]

and any v € U. Then as noted above
dJ (ug)
df 16=0

Expression (5) is, therefore, true when v is replaced by v — u* for any v € [, and we can

= (J'(«*),v(t) = u*(2)) > 0.

deduce the following minimum principle.

THEOREM 3.7. Suppose u* € U is an optimial control. Then a.s. in w and a.e. int

(pe-s { (G0 = (1 + o)™ o) (Gr,0)) Jor = u)gh
+ (o, 7=, O + By (G0 or — i) 2 0. (D)

4, The Adjoint Process

The process p is the adjoint process. However, (7) also contains the integrand v. In
this section we shall obtain a more explicit expression for - in the case when u* is Markov,

and also derive forward and backward equations satisfied by p.

ASSUMPTION 4.1. The optimal control u* is a Markov, feedback control. That is, u* :
(0,7) x RN+ 5 U so that u*(s,q5_) €U.

LEMMA 4.2. Wirite 6 for the predictable “integrand” such that Ap; = py — ps— = 6t ANy,
i.e., pt = ps— + 8;AN;. Furthermore, write s = g, By.(u*(t—,q)) = B*(¢;-) = B*(q),
and By(u* (t, 1)) = B*(ar). Then

8i(a) = (I + B*((I + B*(4))a)) " pe—((I + B*(9))q) — pe(q). (8)

Proof. Let us examine what happens if there is a jump at time ¢; that is, suppose

AN; = 1. Then ¢ = (I + B*(g))g. By the Markov property and from Definition 3.5,
bt = E[D*(t1 T + Bf,[’k(u*)) e D*(T’ Ty)e| Yy

= pt(at) = p¢((I + B*(9))q)

= (I +B*(a)) pt—((Z + B*(9))a),

and the result follows. Heuristically, the integrand 6 assumes there is a jump at ¢; the

question of whether there is a jump is determined by the factor AN;.

8
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THEOREM 4.3. Under Assumption 4.1 ard with &; given by (8)
7r = &*(r—=,0) (1 + Br(u*))8r + Br(u")py—). (9)
- t e
Proof. ®*(t,0) py = My = E1[®*(T,0)¢| V3] = E1[®*(T,0)' 0]+ /{; 1rdQ,. However,
- if u* is Markov the process ¢* is Markov, and, writing q = g, ®=®*,0),
B1[®*(T,0)2| Y5 = By [8'®*(T,t)'¢ | ¢, 8]
= &' B [8%(T,1)'¢ | g).
Consequently, ps = E1[®*(T,t)2| q] is a function only of g, so by the differentiation rule:

L Opp— — tp
. Pr Dr
- —_ J- —_—
Dt =Dy —r/o 3 (Aq,.__dr.;.qu_er) 1 /(; B dr

T apr_
+ > pr —pr— — —5—Bg_AN;
OZ‘JSt ( 3q - )

t [Opr— b
=po -+ [) l aq (Agr— - Bgr-) + 51'} dr + /0 0rd@ .
Evaluating the producs:

M; = &*(¢,0)'ps
=pp + /t‘I’*(r— 0y’ [-aﬂ:(Aqr_ - Bgp_) + 6T] dr
Jo "L Og
+ /t@*(r— 0)'2&: dr + /t@*(r— 0Y'6,dQ.
0 ’ 87' 0 ’ r
£ t
+ /0 &*(r—,0) A'p,_dr + /0 &*(r—,0Y B'p,—dQ,

4 t
+ / ®*(r—,0) B'6,dQ, + / &*(r—,0) B'6.dr. (10)
0 0
However, M; is a martingale, so the sum of the dr integrals in (10) must be 0, and

tr = &*(r—,0) (6r + Bp(up)8 + B(uf)pr—).
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THEOREM 4.4. Suppose the optimal control u* is Markov. Then a.s. in w and a.e. int,

u* satisfies the minimum principle

0A 0B \
<Pr—a "a';(r» u*)(vr = u:)g:_) + <51‘1 %(T,u*)(vr = u:)q:_) 2 0.

(11)

Proof. Substituting v from (9) into (7), and noting B(I + B)~! - (I + B)"1B =0,

the result follows. (Substituting for B and § gives an alternative form.)

We now derive a forward equation satisfied by the adjoint process p:

THEOREM 4.5. With § given by (8)

t
pt = By [&*(T,0)€] - /O A )pp_dr

¢ t
- / (I + BL(u"))brdr + / 6rdNy.
0 0
Proof. p; = ¥*(,0)M; and this is

t
= E1[®*(T,0)'¢) — / A'¥ Mdr
0
¢ _ ¢
- / B'UYMdQ, + [ (I+B')~1B?u* MdN,
0 0
t _ ¢
+/0 W*’7rer”LB,W*I”/rdNr
. /t(I+B')‘lB'21IJ*’ dN,
t 0 Yraivy
¢ ¢ _
= By [#*(T,0/4] - /0 Alpp_dr - /0 B'p,_dQ,
¢ t _
+J{) (I+ B~ 1B"%p,_dN, + /0 ((I + B"é, + B'p,_)dQ,
t I—1n/ / 7
_fo(u-B)- B(7 + B')ér + B'py_)dN;
. R L 2
= E1{@*(T,0)¢] - /o A'pr_dr

t o
+ fo (I + B')$-d0, — /0 B6,dNy.

10

(12)

b B L B0 % g I
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Therefore, the result follows. ' 0
However, an alternative backward equation for the adjoint process p is obtained from
the observation that the sum of the bounded variation terms in (10) must be identically

zero. Therefore, we have the following result which appears to be new:

THEOREM 4.6. With & given by (8) the Markov adjoint process py(q) is given by the

backward equation

Opt

5t %)qi -(4%g) = BY(@))a + A*(0)'pe + (I + B*(9))8r = 0

with the terminal condition

pr =L
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AsstracT. — Time reversal is considered for a standard Peisson process,
a point process with Markov intensity and a point process with a predic-
table intensity. In the latter case an analog of the Fréchet derivative for
functionals of a Poisson process is infroduced and used in techniques of
integration-by-parts 1o obtain formulate similar to those of Follmer in the
Wiener space situation.
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REsumt. — Le retournement du temps est considéré pour un processus
de Poisson, un processus ponctuel avec intensité markovienne et un pro-
cessus ponctuel avec intensité prévisible. Pour le dernier cas. nous introdu-
isons une sorte de dérivée Fréchet pour les fonctionnels d'un processus de
Poisson et l'utilisons dans les méthodes d'intégration par parties pour
obtenir des formules qui sont similaires & ~clles de Follmer pour la
situation brownienne.
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358 R, J. ELLIOTT AND A. H. TSOI

1. INTRODUCTION

The time reversal of stochastic processes has been investigated for some
years. Onc motivation comes from quantum theory, and this is discussed
in the book of Nelson [I1]. The time reversal of Markov diffusions is
treated in, for example, the papers of Elliott and Anderson [4], and
Haussman and Pardoux [8]. However, the first discussion of time reversal
for a non-Markov process on Wiener space appears in the paper by
Follmer [7). in which he uses an integration-by-parts formula related to
the Malliavin calculus.

In the present paper an analog of the Fréchet derivative is introduced
for functionals of a Poisson process. The integration-by-parts formula on
Poisson space, see [6], is formulated in terms of this derivative and
counterparts of Follmer’s formulac are obtained.

In Scction 2 the time reversed form of the standard Poisson process is

derived. Section 3 considers a point (counting) process N with Markov
{

intensity /1(N,), so that Q,=N,—J h(Ny)ds is a martingale, and obtains
0

the reverse time decomposition of Q for te(0.1]. Finally, in Section 4,
the situation when /i is predictable is considered using the “Fréchet”
derivative and integration-by-narts techniques mentioned above.

2. TIME REVERSAL UNDER THE ORIGINAL MEASURE

Consider a standard Poisson process N={N,:05r<1} on (Q,Z,P).
We take No=0. Let {#,} be the right-continuous, complete filtration
generated by N. Let G?=6 {N,:1<s51} and {G, } be the left-continuous
completion of { G? }.

The following result is well known; see, for example, Theorem 2.6 in
Y}. For completeness we sketch the proof.

Annales de Ulnstitut Henri Poincaré - Probabilités ct Statistiques

; ‘\QWM@ ik

PRITY IR

Mottt




TIME REVERSAL 359

TueoreM 2.1. — Under P, N is a recverse time G-quasimartingale, and
it has the decomposition:

1
N,=N, +M,-J N s,
e S

where M is a reverse time Gg-martingale.
Proof. — Since N is Markov, we have, for >0,

E[Nx—t-Nl‘Gl]=E[Nl—t_NllN‘]

g
=- IN,
!

@.1

(see [5] and [10]). Thus

¢
J E|E[N,..—N,|G]]ds=0(e).
0
By Stricker's theorem [12], N, is a reverse time G-quasimartingale. Con-
sidering approximate Laplacians we see it has the decomposition
1
N,=N,+M,+J a,.ds 2.2)

]

where from (2.1) and (2.2), for almost all ¢

2,= lim -l-[ Efo, |G} ds
cjo €,
= lim LE[N,“—N,}G,]
10 b
L h'A

o
= —

1

3. TIME REVERSAL AFTER A CHANGE OF MEASURE:
THE MARKOV CASE

Consider a process h,=/(N,) which satisfies: There exist positive cons-
tants A, K>0 such that 0<A</i(N)ZK forall 1. a.s.
Define the family {A,,0S¢S1} of exponentials:

A= T] 0+GN,H-Da Nu)cpr =h (N,,_))du).
)]

0Sug:
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360 R, J. ELLIOTT AND A. H. TSOI

Then A is an (& ,)-martingale under P, and is the unique solution of the
cquation i

A=1 +J' Ay (RN, )= D) (dN, = d).

1]
Define a new probability measure P# by

-;E)-=Al.

]
Then under P* the process H,=N,— [ h(N,_)du is an (Z)-martingale

4O
1

(see [3]). Let B(t)=J h(N,_)du so that { is positive and increasing in ¢
0
because /1 is positive. Write

Y(@n=p"" (.
N: = N»" (31

! =
/' -/’0‘”.

Lemsa 3.1, = (N)) is a Poisson process under (Q, 7 ,(F}), P").
Proof. - Since H,=N,—B(/) is an (F)-martingale under P*,
H;=H, =Ny, — 1 is an (F,)-martingale under P*. By 116’s rule,

H2

{
2 f HI_dH+ Y (AN )

sSt

N

!

4
2 J H._ dH.+ N, ¢
0

Hence Hj ,—1 is also an (F;)-martingale under P*. Therefore. { N;} is
Poisson by Lévy’s characterization (Theorem 12.31 in [2]). O

LeEmMA 3.2, = N is Markov under P*.

Proof. — Consider any ¢eC§ (R). For 125, by Bayes’ formula,
ElA0(N)|#]

EA]Z)
=E[Aio(N)|F )]
=E[A{o (N)| N,

because N is Markov under P, where

E'lo(N)| 7 )=

At= ] (1+(h(N,)=1)AN,)exp (f'(l —h(N,) du).

s<ust

5
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TIME REVERSAL 361

Hence
E'lo(N)|F J=E"[o (N)|N]]

and N is Markov under P*. 0O
Note that

1
H,=H1+N,—N,+J (N, ds. 3.1

Thus H, is a reverse time G-quasimartingale under P" if and only if N,
is. To determine the reverse time decomposition we again investigate the
approximate Laplacians, as in [4].

TheoreM 3. 3.

lim lE"[l’\!,_t—l’\I,lG,]== —E”[Iz(N,-— l)—‘L—IN,]. (3.2)
c10 €
te f h(N,)du
0
Proof. — By Lemma 3.2,
E"[N,—N,_.|G]=E*[N,— N,_,|N].

Consider a bounded, differentiable function ¢ on R and its restriction to
Z (the range of N). Now

p(N)=0¢ (N,-a)’rj (@(N;-+D—o(N,))dN,.

| Sk 4

So

o(N)(N,~ Nx-c)=J (Ny- =N (@ (N + 1) =@ (N ) dN

+J PN AN+ 3 Ap(N)AN

-t 1~c<sst

J' (Ny- =N, (@ (N, + 1) = 9 (N,)) dN

~£

t
+J @ (N, +1)dN,.
!

k7

Since

0
“t
- NT AN N Jo
= 1N _J HaNgL i
0

Vol. 26. n* 2-1990.




362 R.J. ELLIOTT AND A H TSOI
is a martingale under P,
E'o (N)(N,—N,_))]

=Eh [J' Ny =N (@ (N + D)= (N, ) A (NS_)(/S]

+E" [J' O(N,_+1)h (NS_)ds]. (3.3)

Now, if |@]<C,

Eﬂ]"(NV—NpgmwNp+n—¢@aJma%Jm]

gzxcf E'[|N,- = N,_, [ ds

gZKCj' E[ :|
J h(N,.)du :I
-N

+E"[
27142
. J h(N, )du] +Ks}ds
¢ t 142
_S_2KCJ {E"[ Iz(N,,_)a'u:I +Ke}ds
ok # t—e

H
<2 ch (K&)' +Ke)dsSK e¥2+ K" g2,
i1=-c

N,.—N, “'J R(N,.) du

Thus from (3. 3),

lim E”[(D(N,)(N N,-J=E"[e(N,-+ 1) A(N,)]

ci0 £
=E"fo(N,+DAN). (3.4

However,

E'[o (N, + DAMN)I=E" [0 (Ny g g+ DNy 5 o))
=F [ (fo ot Nh (NE! (:))]
= o (N 1Ny ) { B0

Annales de I'lnstitut Henr: Poincaré - Probabilités et Statistiques

W oot
s

o 1 g
‘1‘%%[ (P i




TIME REVERSAL 363

And
E'[( (Ngo+Dh (Np ) l B(’)]

=3 (p(k+l)h(l\)ﬁ(t)kc ro

h=0
; B@etw 1
h(—1)
=L eOrDTH— 50
E" L‘P(Nn(x))ll(Np(«) )22 B‘(H;) B(’):I

N
=E" @(N)h(N,— 1) —~ .
I}P( )i ( )B(’)lﬁ(l)]

Hence,
O e e
J (N du
0
Thus from (3.4) and (3.95),
im E"[m(N,)(—W}E"[(p(N,)h(N.— h— |
2o ¢ J h(N,) du
0
or
lim E"[N———l :|= —E”[lz(N - 1)——N————iN,:]. 0
o Jlt(N)dn
0

By Theorem 3.3 and an argument similar to that in [4], we see that N,
and hence H, is a reverse time G,-quasimartingale under P*, and it has
the decomposition

1
H,=H1+M,+J o,d, (3.6)

Moreover, we have the following expression for o, :

THeoreM 3.4, — The integrand o, that appears in (3.6) is given by

o, =h(N)—E" [h ™~ - 1)“-31-—- % N,].

J h(N,)du’
0

Vol. 26, n® 2-1990.
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364 R. J. ELLIOTT AND A, H. TSOI

Proof. — From (3.1) and (3.6),

o ds| G,]

H

E"[H,-C—H.IG,1=E"[ f

=E* [Nl—c_Ni (GI]+ Eh[f

t—¢

h(N,) ds| G,:I.

Thus for almost all ¢

¢lo € €l 0

t
o, = lim lE"[j asdslG,]=lim i—E"[N,-t—N,]G,]-HI(N,).

t—¢&

From Theorem 3.3, o, has the stated form. O

4. TIME REVERSAL AFTER A CHANGE OF MEASURE:
THE NON-MARKOYV CASE

This section involves an integration by parts for Poisson processes which
is effected by using a Girsanov transformation to change the intensity and
then compensating by a time change. In contrast. the integration by parts
considered in [1] is obtained by introducing a perturbation of the size of
the jumps. The topic is further investigated in [6].

Suppose {N,:05:<1} is a Poisson process with jump times
Tyal .., T,al,... Let {u{ be a real predictable process satisfying
{1,} is positivc and bounded a.s.

For £>0, consider the family of exponentials:

t

A= [ (+suA NQexp(—f susds).
0ssst 0

Then { At} is an {F, }-martingale with E[A{]=1 (sce [6]). Define a proba-

bility measure P* on %, by

1
1 SO

T

dp

Set

t
P ()= J( (i+eu)ds
0

Annales de Ulnstitut Henri Peincaréd - Probabilités ct Statstiques
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and write
! 1
\llg(f)=(9£'l(f)=J l+_su—_'ds
Y Vs (s)
Fi=F g0
Then the process Nj =N, _, is Poisson on (Q, #,(Z7), P*) with jump times
o (TAL...,0(T) AL ... (see[6]).

t

For {u,} as above, set U,=f uyds. Suppose g, () is an { F, }-predictable
0

function on [0, 1]. Then for 02s<T; A 1,

g(w)=g(s),
and in general, for T,.; A I <sST, A ],
g=g( Ty Al ... . Ty A1)

Note that by setting g,(0,0,...)=g(s) for O0Ss=T, AL
g (=T vo,....s—T,.)v0),0,0,...) for T, Al<sET, Al
etc., such a g can be written in the form

gW=g (s=T)O Vv O0.(s—-Ty) v0....) sef0.1]. @.1n
Therefore, we shall consider a predictable function g of this form, and
further assume that if

g=g. ()

. . 0g . .

then all the partial denvalwes—;‘ exist for all 5, and there is a constant
i

K >0 such that

%

; <K forall i,andforalls. (4.2
ot

We now define the analog of the Fréchet derivative for functionals of the
Poisson process.

Write
gg:gs((s_(‘p:(’rl)) Vv 05 T "(S_(pc(Tn)) v 07 " )
Then
0g: - @ .
= ==Y —g (s=-T)vO,...,6=T)voO,...
aS o i; a[l&s(( 1) ( ) )

Tl
XJ udrly .. (4.3)
o

Vol. 26, n® 2-1990.




366 R. J. ELLIOTT AND A. H. TSOI

Define

c 0
p@dn=-7 g—srmsn ()

1= i

where 8y, is the point mass at T;. Then

a,,c s 't
=5 = f u, drp (dr)
88 e=0 JOJO
s s
= Jv IOSrgtSsurdrp(dt)
Jodo T
[*s
=\ u(r.s)u,dr
Jo
s © 2
= —J Z lrST <3 ”rd’
0i=1 i
= f Dg(.,lr,sPu.dr,
0
where
oG a’g
Dgs(.,[)',S])': - Z Ir§T,'<si‘
=1 o
Write

Dg,(.,U)= J Dg,(..[r,sDhu,dr.
0

Note that

i—]a ' T,
Dgr, (., Uy=- 3, —(;gﬁjv Ju,dr. 4.4

j=1 0l; Jo

DeriNiTION 4.1, — A process {g,} of the form (4.1) is said to be
differentiable if it satisfics (4.2) and (4.3) for all u satisfying (i) and (ii)
above, and for all 5. We call Dg,(., U) the derivative of g, in the direction
U. It is of interest to note that this concept of differentiability of a function
of a Poisson process is an analog of the Fréchet derivative of a function
of a continuous process. See Follmer [7], where similar formulae arisc
using the Fréchet derivative.

Annales Je Ulnstiut Henrt Poincaré - Probabihlités et Statistiques
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TIME REVERSAL 367

Now suppose { h,} is a bounded, { F, }-predictable process of the form
given by (4.1), which satisfies:
(@) h is differentiable in the sense of Definition 4. 1.

1y

as

<A for

oh, . .
()] —6—5 exists, and there exists a constant A >0 such that
s

all s, a.s.
(¢) There are constants B>0, C>0 such that 0<B<h,<C for all s,

a.s.
It is easy to check that h,=h,((s—T,) v 0. (s—=T,) v 0. ...) is predict-
able. Consider the family of exponentials:

G= ] (l+(hs—l)ANQexp(f(l—hs)ds)
0

0855t

= ( I h’[‘,-) exp (f (1=h) ds). 4.5)
0STist 0

Then {G,} is a martingale with E[G]=1. Since for each fixed o, if
To-1 (@ <tET, (), G, is a function of (1, T, (®), . . .. T,-, (®)), we see as
above that G, can be considered to ve of the form

G,=G,(t=T)vO0,...,(=T,) v O....)

THEOREM 4.2. = (G,) defined in (4.5) is differentiable in the sense of
Definition 4. 1.
Moreover,

1
DG,(.,U)G;‘=J v, G lds

0
(ion | & oh 1

= =+ ) Lpey—+Dh(. [r.s]) | —dN,u, dr

LJ:» [&S‘ jgl {T;< }('}Ij (| S])]hs( U,

1 1t
—j J Dia,(.,[r,sDdsu dr, as. (4.0)

0

where

i F
yy==3 lséwacl«l ~TYvO0,...,(0=T)v0,...).

i=]

Proof. — The first identity follows from the definition and properties
of the derivative. To determine DG, (., U) we calculate the derivative of

G! al =0. Write

h§=hs((5"(95(T|)) v 03 .. .,(S—(PC(T,,)) v 0‘ - ')’

Vol. 26, n® 2-1990.
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368 R. J. ELLIOTT AND A. H. TSOI

S0
t
Ge= [ (1+(E—1)AN,, ) exp (,( (1-h%) ds)
0Ssst 0
t
=( H G, (ry) €XP (J (a-n dS)
0So (T st 0
1
(11, eien([0-120)
0STS¥e (1) [
Then
@ t
log Gi= ¥ Ly,<y, 10 /E, 1+ J (1- 1) ds. @.7)
i=1 0

Differentiate (4.7) with respect to €, and then set =0, to see

1 * oh
DG,(.,U) E ;{rm[ a; L u, dr

:—la ’ \ T,
+ 3 J(J u,tlr-f ju,dr)]—-]-—}
i=1 5[1 0 0 IIT,

—J Dh(.,U)ds, a.s.
0

@ {I a/l'riJTi 1
<l — 1 wdr
=1 T‘—S-’ a[ 1]
“Yohy [T
Y JJ u,dr+DlzT‘(.,U)}—l—-}
j=1 51_, 0 th
t H s
—j Dlzs(.,U)(1s=J [%J 1, dr
o ol 05 Jo

+ ) Imq,(;l[‘[ u,dr+Dh(. U)};—([N

i= J

From (4.4) this is

IS
—-J Dh( .U)yds. (4.8)
0

(Formally, the differentiation of the indicator functions I7 ., ., in

Dirac measures 8 (¢—7T;.) However, P(T;=1)=0 and we later will take

intrody
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TIME REVERSAL 369

expectations, so these can be ignored.) From (4.8),

1
DGI(.,U)G;1=J {‘l”sfu (1r+LI(T<s)a}lj’zl dr
o L0s jo 0t; Jo

s 1

+ j Dh,(.,{r,sDu,dr } —dN; - J J Dh,(.,[r, s u, drds
) h 0 Jo

1 l

L oh
=J J Iogrgsgx{”—‘—+ Z ¢r; <s}a
1

0 JO 5S j=

1
}dl dN,— J J Togrssst DACoutr, s, drds
0

0

+Dh(.,[r,sDu, >
IS

=J‘ [ ahs + Z I(T <s}a’s +Dh ,[I', S']) ldNSll,dr
0 vr a hs

Js j=1
1 1
—J J Dhg(.,[r.s) dsu,dr,
0 Jr
which is (4.6). O
Consider the family of exponenthls defined by (4.5) and definc a new
probability measure P* on .#, byv:
1]
o
dP
Then (see [3]) the process
t
Z,=N,-—J hyds
0 4.9)
H
=Q,—J (hy— 1) ds,
0

where Q,=N,—1, is an (& )-martingale under P, We want to show that

Z, is a reverse time G,-quasimartingale under P*, having the decomposition
1

Z:=Z1+M:+J o, ds. 4.10)

t

From (4.9), we can write

H
Z=7,+Q~Q '*J (hs= Ty ds.
!

Now for almost all ¢
lim ~ E"[f (hy —1)ds|G] E'h,—1]|G).

¢} 0 €

Vol, 26, n* 2-1990.




370 R. J. ELLIOTT AND A. H. TSOI

Hence, to show that Z, has the decomposition given by (4.10), it again
suffices 10 consider approximate Laplacien as in {4] and show that

lim E"[Q. -~ Q|G

c} O
exists,

THeoREM 4.3. -~ For almost all 1[0, 1]

lim "Eh[Qt Ql JG‘]'—~E"[Q,+(I,‘GJ Eh[b lG
t10 €

@.11
where

oh, & oh,
al:J;.L l:a) * 2’ Ty<riar

j= 01

!
+Dh(..[s, r])] ll dN, ds— J J' DA, (.,[s, r]) drds
I! 5

0

b,‘J [‘;”WZI{T,Q,@ +Dh, (..[1. r])]—dN JD/' .
c 131 . t

Proof. — First we note that if H((I-T,) vO0,...,(1=T)vO0,...)is
a square integrable functional and its first partial derivatives are all

bounded by a constant, then, using a similar argument as in [6], we have
the integration by parts formula

E[(Jl usdQs) H]= --E[DH (., U)]
0

4.12)
where DH (., U) is the derivative in direction U of Definition 4. 1
A direct consequence is the product rule
i
E[FH (j usdQs)]= —E{FDH(..U)]-E[HDF(.,U)]. @.13) .
) 0

Let H=G, be the Girsanov density, then (4. 13) becomes

1
. E”[FJ uS(IQs:|= —Ef[DF(.,U))=E"[FG[! DG, (.,U)]. (4.14)
= 0
: Now fix 1,€(0, 1). Write T, () for the k-th jump time of N, greater than

 grex .
to- Suppose F is a bounded and G,, measurable function. Furthermore,
we suppose that F is a differentiable function (in the sense of Definition
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4.1) of the form
F(A=Ti ) v O,....(0=T(to) v 0, ...),

and that the derivatives of F are bounded. Then the measure DF (., dr) is
concentrated on [ty,1] and (4.14) holds for such an F. Take
U= Tp i 1) (5) in (4.14). For such an F

DE(..U)=| ' DF(.,[r, 1)dr

g—¢

I
=f * DF(.,[to, 1)) dr
10—
=¢DF (., {15, ).
Therefore, we have from (4. 14)

E"[(Q,~ Qi) FI= =€ E*[DF (...[to. 1])]

+E"[FG: f S Lrer aG
, '

o-¢i=1

(I.s':l. (4.15)
From (4.15), for almost all ¢

lin é[(Q,O-Q,O-;) Fl= — E"[DF (., [to, 1]}

€1 0

+EI;[FG;—1 Z I,o§T.<l%(7}l]. 4.10)
i=1

Using (4.15) again with £=:,=1, we have

~E*DF(.[1, ID]= {Eh [Q.F)

1 ; 0G,
- -E"| FG;* Lori<
. [ 1 J;) Z $sSTi< 1 61

i=1

(Iv] 4.17

Now let u; =14 ,(s) in Theorem 4.2 to obtain

aG,
| Grld
L(IZI sSTi<1 o ) as
=j J [(7/1 Y I{T}<,,‘ZI’+DII s, 1])l—dN ds

8:‘ i=1 i _,

- Jw f Dh (.,[s, 1)) dr ds.
O vs

Vol. 26, n° 2-1990.




T R e

R TR T R g

372 R. J. ELLIOTY AND A H. TSOI

Hence (4. 17) becomes
~E'[DF(.,[1, 1)}= -:-E"[Q, F]+ ;E" [, Fl. (4.18)

Now take u;=1j,_, , (s) in Theorem 4.2 to obtain

L g G,
- | S G lds
J;—;( Z sST;<1 6f ) 1

i=1 i

f oh, < oh, l
=J;_tJ; [a + Z I{'I“,<r)a +D/I ( ,(s,r])]z:(mrds

—j J Dh,(.,[s,rDdrds. (4.19)

Multiply both sides of (4. 19) by F, and then take expectations

—E"[ f (leﬂ,qa; )G;‘(zs]=Eh[FJ bsds]. (4.20)
t=¢ \i=1 t—c

Divide both sides of (4.20) by ¢, and then let 0, ‘o obtain for almost
all ¢

ot;
Combining (4. 16) {4.18) and (4.21), we have

“E"[ (Z fimr )Gr‘]=E"[b,F1. @.21)

lim E” Q- Q,-z)T]——E"[(aﬁQ.) F]-E*[h, F].

£l 0

Thus we have proved (4.11). O

As a consequence of Theorem 4.3, Z, is a reverse time G,-quasimartin-
gale having the decomposition given by (4.10). It follows immediately
that the integrand o, in (4. 10) is given by

0,=E"[b,+h~1]G]~ 15"[a,+Q,1G,].
t
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Orthogonal Martingale
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Abstract

Stochastic integrals with respect to a martingale X often involve
a predictable process integrated against the continuous martingale
componert X¢ together with terms which are integrals of the com-
pensated random measures associated with the jumps. The latter
are related to ‘optional’ stochastic integrals. The main result of this
paper relates such a stochastic integral with the sum of a predictable
stochastic integral of X and an orthogonal martingale. The result
has applications in the hedging of contingent claims in finance.
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1 Introduction

For a real local martingale

Xi = Xo + Mf + M

write g = uX for the random measure associated with the jumps
of A (see Jacod [7]), and v = p¥ for its predictable compensator.
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2 Robert J. Elliott and Hans Follmer

Consider a local martingale of the form

No=Not [[6adtti+ || [9a)udnnds) - st do) (0

where ¢ and 9 are suitable integrands. Projecting N on X we can
write

3
Nt = No + /(; 7sts + rt (2)

where I' is a local martingale orthogonal to X, in the sense that the
product I'X is a local martingale, In this paper our purpose is to
determine explicit formulae for 7 in terms of ¢ and 1, both in the
general case and for Markov diffusions with jumps.

These results have applications in the hedging of contingent claims
in finance. See [5] and [6]. For example, suppose that the martingale
X represents the price of some asset at time ¢ and that for T > 0
a contingent claim is given by H(Xr), where H is a function such
that H(Xr) is a real, square integrable random variable. Suppose at
time ¢ we invest amount & in the asset and an amount 7 in a riskless
bond with zero interest rate and price Y = 1. Then the value of our
portfolio at time ¢ is

Vi=&Xe+ Y = &Xo + .

We assume £ is predictable with respect to the filtration {F;} gener-
ated by X, and 7 is adapted. The accumulated gain from the asset
price fluctuations up to time ¢ is the stochastic integral fO‘E,dX,.
Then the cost accumulated to time ¢ by using the investment strat-

egy (ft’ Ut) is
t
Ct'—'Vt"'/estsa 0<t<T.
0

We want our investment strategy to duplicate the contingent claim,
so for a strategy (£,n) to be admissible we also require

Vr = érX7 + 97 = H(X7T).
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Now suppose H(Xr) can be represented as a (predictable) stochas-
tic integral

H(Xr) = BLECK) + [ €FaX, as, 3

for some (predictable) integrand ¢#. Then let us take an investment
strategy (£,7) and value process V defined by:

& =&, = Vi = &Xy
and .
Ve= BH(X0) + [ €dX..

We have Vr = H(Xr), so the strategy is admissible and for all
t€[0,T]
Ci = Cr = Co = E[H(XT)).
That is the strategy is self-financing because, apart from the ini-
tial cost Co = E[H(X7)], no additional costs arise and no risks are
involved.
Conversely, if there is a self-financing strategy (¢,7),

t t
V= Cit [ 6dX, = Co+ [ 6ax,,
so V; is a martingale. Therefore,
Vi= E[VT I Ft] = E[H(XT) | Ft]

and
Vo = Cp = E[H(X7)),

so the martingale V' has the representation

V, = E[H(X7)] + /0 t«ssdxs. ()

The existence of a self-financing strategy is, therefore, equivalent to
the representation of the martingale E[H(X7T) | Fi] in the form (4)
for some predictable integrand £. In general, a representation in this

form is not available. In this case we can proceed as follows (cf. [5]
and [6]).
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Definition 1.1 An admissible investment strategy (£,7) is said to
be mean self-financing if the corresponding cost process C is a mar-
tingale. That is, for t < T,

E[Cr-Ci| F]=0 as.

In this case, by definition

t t
Vi=Cot [ X, = ECr | F)+ [ dXe.

Therefore, V' is a martingale for an admissible mean self-financing
strategy. Consequently,

Vo = Co = E[H(XT)]

and
¢
Vi = BlH(Xr) | F) = BUH(XD)] + K+ [ 6,
where K, is the martingale E[CT | F}] — Co. Note that, if (£,7) is

an admissible, mean self-financing strategy, V; = E[H(Xt) | Ft] is
independent of £. However,

t
Ci=Cé=Vi- [oe,dx,

does depend on &, as does K above. Therefore, K f = E[C% l Ft]——C’g
and each admissible, mean self-financing strategy (£, 7) gives rise to
a decomposition:

Vi= BLE(X) | Bl = BEKD] + K + [ 6% (9

Definition 1.2 For each admissible mean self-financing strategy the
remaining risk is defined to be

Rf = E[(C5 - C{)* | Fi.

g L A Lt

b,
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Consider the unique Kunita~Watanabe decomposition

Vi= BEXE)+ Tt [ eax,

where I' is a martingale orthogonal to X and £* is a predictable
integrand. Now define an investment strategy (£*,7*) by putting

t
V= BEXD]+Tc+ [ £4X, ad 7 =Vi-&Xe (6)

Then (£*,7*) is an admissible, mean self-financing strategy which
minimizes the remaining risk R;. To see this note that for any other
admissible, mean self-financing strategy (¢,7):

s - C¢ = K& - K¢.
However, from (5) and (6)

¢ ¢ T T
KS - Kb+ /t £dX, =Tp—Ti + /t £2dX,.

Therefore, because T' is orthogonal to X,

T
B[(C§~CS) | F) = B(Tr-Tf* | RL+E [ (€-6Vd(X,X), | F)

and this is minimized when £ = £€*. Consequently, the unique admis-
sible, risk minimizing investment strategy is (£*,7*), where £* is the
predictable integrand arising in the representation (6).

This discussion indicates why decompositions such as (6), to-
gether with an explicit formula for the integrand, are of interest
in finance. Representations such as (1) arise when the asset price
X¢ = Xo+ Mf+ M also involves random disturbances of jump type.

In that case, a contingent claim typically admits a representation as
in (1)

T
H(Xz) = BECX [ g
0
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Then ¢, and ¢,(y) for each y € R, (or, at least, for each y in the
support of g = uX), must represent amounts invested in different
assets in order to duplicate (i.e., represent) the claim H(X7). How-
ever, if the only assets available are X and Y = 1, we must consider
the alternative representation (2)

T
H(Xg) = BE(Xz)|+ [ 1.dX; + Te

Then v will generate the risk minimizing mean self-financing invest-
ment strategy described above.

In particular, even though (after a Girsanov change of measure)
the Markov diffusion process considered by Aase in [1] is complete in
a mathematical sense, that is, contingent claims have a representa-
tion of the form (7), it is not complete in the financial sense; that is,
they do not necessarily admit a decomposition (3). To replicate the
claims in Aase’s model an uncountable number of additional artificial
assets would be required. Clearly this is not realistic.

Orthogonal martingale representation after a Girsanov change of
measure will be discussed in another paper.

2 Orthogonal Projection

Consider a real local martingale
Xt = Xo + M§ + M.
Suppose

p=p(dy,dt) = 3 Iiax,20y8(s,0%,)(dy, d2)
>0
and
= v(dy,dt) = uF.

Write {F;} for the right continuous, complete filtration genecrated
by X. Consider a process N which is a stochastic integral of the
form

Ne= o+ [ FpsdME + / ‘ [ty ds) - ol ds) -

o T A
\
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for suitable integrands ¢ and 3. What we wish to do is write

t
Ne=Nog+ L 'stXa + T (9)

where v is a predictable integrand and T' is a local martingale or-
thogonal to X. From Jacod [7] we know that the stochastic integral
J [ ¥(dp—dv) in (8) is related to an optional stochastic integral with
respect to M? = [§ [py(u(dy,ds) — v(dy, ds)); consequently we are
relating the optional integrals in (8) to the predictable integral in (9).

Proposition 2.1 Assume there is a reference measure v = v(w, ds)
such that (M€, M*) and A are absolutely continuous with respect to v,
where

v(dy,ds) = m(s,dy)A(ds).
Write p, = d{(M°,M¢)/dv and A\, = d\[/dv. Then if N is the mar-
tingale given by (8), the process v in (9) is

_ Ps®s + s Jpyths(y)m(s, dy)

s 10
T = N [ (s, dy) (10
Proof. Note if 7 is the predictable integrand of (9)
t t ¢
A = / odX, = / 1M+ [ i (11)
0 0 0

t t
= [Freantz + [ [ 129(utdy,de) - v(dy, ds).

From (8) and (9)

I, = /0 (b = 15)dME + /0 t /; ($(3) = 1s9)(1(dy, ds) — v(dy,ds)).

The martingales T' and X are orthogoral if (I', X] is a martingale
(see Dellacherie and Meyer VII1.41, [3]). However, writing X as

t
Xo=Xo+ Mi+ [ [ y(u(dy,ds) - vldy, ds))
JO JR
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we have
1 t
X = [ (8= 1,200+ [ [ 3(0u(a) = ity do)
t t
= /0 (8= lpads + | /R Y(s(9) ~ 7,3)((dy, ds) - v(dy, ds))
t
+ /0 /R Y(¥s(y) — 1sy)m(s, dy)A,ds.

This is a martingale if and only if

/0 t(¢a — 7s)psds + /0 t /R ¥(¥s(y) — 1sy)m(s, dy)A,ds

is the null process, which is the case if and only if the integrand is
zero. Therefore,

(8= 1ps + Xe [ Y04s(3) = 768)ms, dy) = 0
and (10) follows.

Remarks 2.2. 1) If M¢ =0, so that g = v = 0, then 7 = ¢.
2) Note

/Ry"!’s(y)m(s’dy) = E[AX,AN, I Fs—]

and
[mis,de) = BIAXE | Fio] = (aX),

where P( ) denotes the predictable projection.

3) f M¢ =0,
_ [aybs(y)m(s,dy) _ E[AX,AN, | F,] _ P(AXAN),
V= T m(s,dy) | EAXZ|F] | P(AX?),

so 7 can be interpreted as the regression of the jumps of N on the
jumps of X,
4) With apprepriate inte

in R™, the same expression for + is valid
martingale.

+ + - aend
ucts as tensor products

1
when X is an m-dimensional




Orthogonal Martingale Representation 9

3 Representation Results
Consider a real, local martingale
X = Xo+ MF+ M2

and let 4 = u¥X, v = pP. Suppose F € C12, the space of functions
continuously differentiable in ¢ and twice continuously differentiable
in z. Then the differentiation rule gives (see Jacod [7])

F(t,X,) = F(0, Xo) + Ot%g(s, X,_)ds + /o t%%(s,X,_)de
+ [ [ (Pl Xam ) = Pl X))y, ds) = w(dy, o)
1 rtAQ2
+5 [ G (o, X, 3, (12
+/0t/R(F(s, Xo-+9y)— F(3,X,-) - %g(s,X,_))u(dy, ds).

Suppose X is Markov. For a time T > 0 and an integrable C? func-
tion H(-), consider the random variable H(Xt) and the martingale

Ny = E[H(X,) | F].
Because X is Markov
Ny = E[H(X7) | Xs) =V (¢t,X:), say.
The following representation result appears to be part of the folklore.

Proposition 3.1 Suppose V is C12, that is continuously differ-
entiable in t and twice continuously differentiable in z. Then the
martingale N i3 given by the stochastic integral representation

v
Ny = E[H(X7)] + /0 S5 X, )M

[f Y_ V(e X._Y)
+J0 JR(V('f’;Xs— SR ACIEIEY)
X (p(dy, ds) — v(dy, ds)). (13)
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Furthermore, suppose

t
(M€, M), = / pads
0

and
v(dy, ds) = m(s,dy)A,ds.

Then V' is the solution of the backward Kolmogorov equation

v, 1oy
Js 2 9g2 P
oV
+ [ (V06 Xem +) = V(6 Xoo) = Gl X)) mls, du)A,
=0 (14)

with terminal condition
V(T,X7) = H(X7).

Proof. The result follows by expanding V (¢, X;) by the Ito rule
(12) and observing that, because V (¢, X;) = N; is a martingale, the
sum of the bounded variation terms must be the null process.

Remarks 3.2. Often, (see Example 3.4), the differentiability of V

follows from flow properties. In the pure jump case only increments
of V enter in (13).

Corollary 3.3 Write AVy(y) = V(38, X, + y) = V(8, X,s-).

Then from Proposition 2.1 N; can be written

t
N.= B{E(XD)+ [ ndX,+ T

where ov

_ Pe 55 + A pyAVi(y)m(s, dy) (15)
ps + ’\afRyzm(3, dy)

and I is a martingale orthogonal to X.

8
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Example 3.4. Suppose X is a Markov diffusion:
t
Xe=Xo + [ (6%, -)dB,

b [ [ b Xem )0, do) - Py ds). (16)

Here /i is a random measure and # = ji?; note fi is not u%X. Suppose
7(dy,ds) = m(s, X,~,dy)As(X,-)ds. Write &, 4(z) for the solution of
(16) starting at time 7 in position z, so that

La(z)=2 + /r“g(s,fr,,_(:c))dB, (17)
t f,t /Rh(s,g,,,_(x), y)(i(dy, ds) — 7(dy, ds)).

Suppose g, h, m and A and their first two derivatives in z are mea-
surable with linear growth in the z variable. Then from the theory
of stochastic flows, see [2], it is known there is a set A C Q of mea-
sure zero such that the map (r,?,2) — & ¢(2) is twice differentiable

0%, t:cgz> = D, Again write {F}} for the right

continuous o-field generated by X and suppose H is a C?, integrable
function. For T > 0 consider the right continuous martingale

Ny = E[H(fo1(20)) | F]
B{H(&,1(Xe)) | Xi] = V(2, Xa).

From the differentiability of the flow

in z with derivative

oV 0H
55 (6X0) = E[Z=(X1)Dyr | F]-
Substituting in (13) and (15) we have the representations

oH - -
== (Xr)Dor | Fu-| D5 }-9(5, X,-)dB,

N, = E[H(XD)]+ /OtE[

r ;
+f [ B ) -

X k{3, &o,s~(20), ¥)(fidy, ds) — D(dy, ds))

Bt o i e e
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and from Corollary 3.3 this is
= ELE(XD)+ [ mdX, + T
where
70 = {96, oo )2E [%%(XT)DO,T | -] D52
N(Xoe) [ B e (Kam +9)) = Bl (X0)) | Ko

Xh(s’ §0,s- (30)’ ?/)m(sr 50,5—("”0)’ dy)}
X [9(5, Xo-)? + Ao(X.-)

5405, Eo-(00), )7 (s, G- (a0), )]

Example 3.5. The random measure in (16) could be a Poisson
random measure. However, for simplicity suppose it is a finite sum
of independent Poisson processes N§, ¢ = 1,...,n with time varying
jump sizes af and intensities Ai. Suppose g(s, X,-) = 0X,. and
h(s,X,-,y) = X,-, so that X;, (representing an asset price under
a ‘zisk neutral’ measure), is given by the following “log Poisson plus
log normal” equation

t nort , . .
X =Xo+o / X,_dB,+% / X,_ai(dNi - Xds).  (18)
0 i=1 0

Suppose for an integrable C? function H, H(Xr) represents a
contingent claim depending on the asset price at time 7 > 0. Then

Ny = E[H(Xr)|F)]
E[H(X7)) + /0 7odX, + Ty

i

where

o XEB(F (er)Dor | Fe-lDgs + 1 NaidiV
1=

Vs = n .
o2X2 + 3 Ai(a})?
i=1
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and
AV = B(H(§s-1(Xs- + 7)) = H(Eo-7(Xs-)) | Xo-)-
From (18)

Xt = Eomp(Xs-) =
o LI
X,-exp (a(Bt - B,) - ?(t -38)— ?;;/3 a’,/\;ds)
x [I Q+diaN]). (19)
3<r<t

SO

D,y =Dor-Dg:_ =

o? nopt
exp (o(Bi— By) - Z(t—5) =Y / aiXids)
2 i=1v?
x [] (1+aiAN)).
3<r<t
Suppose H(Xr) is a call option of the form H(X7) = (X7 — K)*.
Then H is not C2 but is the limit of the smooth functions H.(Xr) =
-%(XT - K+ /(X1 — K)? + ¢); using approximation arguments it is
shown, for example in [4], that the above theory applies to H. Now

%—g-(XT) = Ixp>K, SO

0H -
E[g;(X 7)Dor | Fi| Dy = Ellxzk Do | X,-]

and because the B and N* are independent this can be evaluated as
in (1], giving a Black-Scholes type formula. Similarly, with &,-7(X,-)
given by (19) A}V can be calculated.
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